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Abstract

We study the problem of predicting an event sequence given
some meta data. In particular, we are interested in learning
easily interpretable models that can accurately generate a se-
quence based on an attribute vector. To this end, we propose
to learn a sparse event-flow graph over the training sequences,
and statistically robust rules that use meta data to determine
which paths to follow. We formalize the problem in terms of
the Minimum Description Length (MDL) principle, by which
we identify the best model as the one that compresses the data
best. As the resulting optimization problem is NP-hard, we
propose the efficient CONSEQUENCE algorithm to discover
good event-flow graphs from data.

Through an extensive set of experiments including a case
study, we show that it ably discovers compact, interpretable
and accurate models for the generation and prediction of
event sequences from data, has a low sample complexity, and
is particularly robust against noise.

Introduction

Real-world event sequences are often accompanied by addi-
tional meta data. For example, event logs of manufacturing
processes contain sequences of production steps with prod-
uct properties and attributes by the customer’s order. Usu-
ally, there is a relationship between these attributes and the
observed event sequence, like certain product groups require
different manufacturing activities. To gain a better under-
standing of the data generating process, we are often inter-
ested in uncovering this mechanism.

In a predictive scenario, for example, production planners
want to know the event sequence for a given product in ad-
vance, such that they can avoid bottlenecks and optimize the
process flow. Rules in production planning systems are often
hand-crafted and do not necessarily display the true com-
plexity of the real process. Existing process models tend to
show idealized, high-level behavior and thus give a limited
picture of the real process (van der Aalst 2016, p. 30).

We are not the first to study sequence prediction based on
meta data. Existing neural network approaches (Taymouri,
La Rosa, and Erfani 2021; Camargo, Dumas, and Gonzélez-
Rojas 2019; Pasquadibisceglie et al. 2019) can achieve high
accuracy given sufficient training data and hyperparameter
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tuning, however, the resulting models are inherently diffi-
cult to interpret. As the key applications, such as optimiz-
ing planning, require interpretation, these solutions do not
suffice in practice. Surprisingly little work results in inter-
pretable models being accurate and robust to noise.

In this paper, we take a different approach. We propose
to model the event sequences as a directed graph with clas-
sification rules on the meta data to determine which paths
to follow. Such an event-flow graph should fit the data well,
but at the same time have a low model complexity to in-
crease interpretability by humans. We formalize the problem
in terms of the Minimum Description Length (MDL) princi-
ple, by which we identify the best model as the one giving
the shortest lossless description of the data.

Due to NP-hardness of the resulting optimization prob-
lem, we propose the greedy method CONSEQUENCE, which
first discovers a directed graph for a given set of event se-
quences and then finds classification rules on the meta data
for nodes with multiple successors. While in practice any
rule-based classifier can be plugged in, we propose the algo-
rithm GERD, which uses a reliable rule effect estimator to
find compact and meaningful rules.

Through extensive experiments including a case study, we
show CONSEQUENCE discovers compact, interpretable and
accurate models for the generation of event sequences from
data. Our method has low sample complexity, works well
under noise and deals with different real-world data.

The main contributions we make in this paper are

(a) formulate the problem of interpretable yet accurate pre-

diction of event sequences from meta data with MDL,

(b) an efficient heuristic to discover event-flow graphs with
rules for sequence prediction
(c) an extensive empirical evaluation.
Our paper is structured as follows. Next, we define necessary
notation and concepts. In Section 3, we formally define the
problem, and propose our algorithmic solution in Section 4.
Before our experiments and a case study in Section 6, we
provide an overview of related work in Section 5. Eventu-
ally, we draw a conclusion and outline possible future work.

We provide detailed empirical results as well as details for
reproducibility in the supplementary. We make all code and
data publicly available!

'http://eda.mmci.uni-saarland.de/prj/consequence
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Preliminaries

Before we formalize the problem, we introduce necessary
notation and concepts used in the remainder of the paper.

Notation

We consider datasets of event sequences with meta data.
Such a dataset D consists of n instances (z, y), where x is a
vector with meta data, and y is a finite event sequence. We
write X to refer to all meta data vectors, and Y to refer to
all event sequences in the dataset.

The list of attributes A specifies the meta data present in
the dataset, where we define the possible values of an at-
tribute A; € A by its domain dom A;, i.e. z; € dom A;.
Attributes are either numerical with dom 4; C R, or cate-
gorical with dom A; = {eq,...,cx}. Each event sequence
y is drawn from a finite alphabet of possible events {2 =
{a,b,...},ie. asequence of length [ is a sample from Q.

For a given dataset D, we want to find a mapping X —
Q*, that given an attribute vector x, generates or predicts the
corresponding sequence y. Our model for interpretable se-
quence prediction is based on a directed graph G = (V, E),
where V' denotes the set of nodes in the graph and E the set
of edges. The set of successors of a node v € V' is given by
succ(v) and its out-degree is specified by deg™ (v).

MDL

The Minimum Description Length (MDL) principle (Rissa-
nen 1978; Griinwald 2007) is an information theoretic ap-
proach for model selection. It identifies the best model as
the one that provides the shortest lossless description of the
given data. Formally, given a set of models M, the best
model M € M minimizes L(M) + L(D | M), where
L(M) is the length of the description of the model in bits,
and L(D | M) is the length of the data encoded with the
model. This is also known as two-part, or crude MDL. Al-
though one-part, or refined MDL, provides stronger theo-
retical guarantees, it is only computable in specific cases
(Griinwald 2007). Since we are especially interested in the
model, we use two-part MDL. In MDL, we are only con-
cerned with code lengths, not actual code words.

To apply the MDL principle to our problem of sequence
prediction, we will now define our model as well as the en-
coding of model and data.

Interpretable Sequence Prediction

In this section, we define our model for interpretable se-
quence prediction and give a formal problem definition.

Event-Flow Graphs

We propose to model the prediction of event sequences from
meta data with event-flow graphs. An event-flow graph M =
(G, R) consists of a directed graph G and a rule relation R.
As any directed graph, G is defined by a tuple (V, E), where
the nodes correspond to events from (2. Multiple nodes are
allowed to refer to the same event. In addition, a valid event-
flow graph consists of a source node v and a sink node v,
which do not refer to any event. We use a path from v to v,
to represent an event sequence y.
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Figure 1: Toy example for a sequence y with meta data = and
a cover of the sequence using a simple event-flow graph.

To model the relationship between meta data and event
sequence, we assign classification rules to nodes using the
rule relation R : V' — R. At a given node v, such a rule
predicts the next node to follow. Formally, we denote a rule
by 6 — ¢, where § : X — {T, L} is the condition, that
for a given meta data vector x either evaluates to true (T) or
false (L), and ¢ € succ(v) is the consequence. A condition
consists of multiple terms that we stack together using and
(A) and or (V), e.g. § = (61 A 62) V 3. A condition term
0 always consists of an attribute a € A, an operator from
the set {>, <,=} and a value for comparison ¢ € doma.
We combine multiple rules to decision lists (Rivest 1987),
which are ordered rule sets, where the classification output
is determined by the first firing rule, i.e. for which §(z) = T.

Given an event-flow graph M, we describe or cover a se-
quence y € Q* by traversing M from v, to v. Since real-
world processes and data usually contain noise, we allow
errors while traversing the graph to enable succinct models.
To reconstruct a sequence from a given cover, we read in-
structional codes from the code stream C, which together
with the rules in the graph determine the path through A
and correct missed or redundant events. Conceptually, we
split C into the model stream C,,,, which encodes how to tra-
verse the model, and the disambiguation stream Cy, which
encodes ambiguous choices of events.

For better illustration, we give a toy example for the cover
of a sequence using a simple event-flow graph in Figure 1.
Starting at the source node v, we read the first code from
C),- The tells us to move one step forward in the model
and emit the next event we arrive at. Since the color attribute
of our example has the value red, the rule at v, only allows us
to go to a, which we then emit. We read the next code from
Cin, , which means that the next event is not captured by
the model. To disambiguate the choice between the events
in 2, we read from C; and get the code for d. The next code
in C,, is , so we go forward in the model and emit an
event. From a, we can either go to b or to ¢, and this time,
there is no rule telling us, which path to follow. Therefore,
we read again from Cj and go to b, which we also emit. We
continue by reading from C,,, we evaluate the rule on
the size attribute and go to and emit c. The next code in C,,,
, tells us to go forward in the model, but not to emit the
event, i.e. the event in the model is redundant. From ¢, we
can only go to b. Finally, we read the last and arrive at
Ve, Which means that we have reconstructed .S without loss.



We now take this concept of sequence cover to define an
MDL score that will formalize how a good event-flow graph
for a given dataset should look like.

MDL for Event-Flow Graphs

A good event-flow graph should fit the data well and at the
same time avoid unnecessary complexity. We use the MDL
principle to formalize this requirement, i.e. we are looking
for a model with low overall encoding cost. First, we define
how to compute the length of the data encoding using the
cover concept as introduced in the former section.

Data Encoding Let Y be a given set of sequences, X the
corresponding attribute vectors and M an event-flow graph.
Then, the encoded length of the data using the model is

LY | M, X) = L(Cp) + L(Ca) ,

i.e. we have to compute the encoded length of the model
stream C',, and the disambiguation stream Cj in the cover.

If we knew the distribution of the codes in C,,, and Cy be-
forehand, Shannon entropy would give us the optimal length
for prefix-free codes, i.e. code = would have length in bits of
— log P(x). This matches the intuition, that more frequently
used codes should have shorter encoded lengths. To avoid
any arbitrary choices in the model encoding, we use pre-
quential codes (Griinwald 2007), which are asymptotically
optimal without requiring initial knowledge of the code dis-
tribution. We start encoding with a uniform distribution and
update the counts after every received message, such that we
have a valid probability distribution for optimal prefix codes
at any point of time (Cover and Thomas 2006).

We condition code lengths on the current node in the
event-flow graph while covering a sequence to make max-
imal use of available information, and to avoid that local
changes in the graph change encoding lengths at all nodes.

For the model stream C,,,, which contains the codes R
and | 7 |, this results in an encoded length of

‘ m‘
usg; (Cr
L(C"L) Z Og Z usgl( | ’Ul) _l’_ € ?
where usg,;(Cy,[i] | v;) denotes how often the i-th code in
C,, has been used before at the current node v;, and € with
standard choice 0.5 is for additive smoothing.

The codes in Cy refer to events in 2. Which codes are
possible at one point of time is dependent on the last code
in C,,. If we have to go forward in the model after reading
a or code, only events corresponding to the directly
following nodes in the graph are possible, whereas reading a
enables all events in (2. That is why we conceptually split
C, into three individual streams, with C. being the stream
for correctly modeled events after reading , C. being
the stream for redundant events after reading (™) and C,, for
missed events after reading . Then, all three streams fol-

low the same computation scheme as C,,. For example,
|C |
Zl usg; (Ca[i] [ vi) + €
> usg; ( | v;)+e

This gives us a lossless encoding of the data using an event-
flow graph.

Model Encoding Since we are using prequential codes for
the data encoding, the computation for the encoded length
of an event-flow graph L(M) is quite simple. Intuitively, a
graph with more nodes, more edges and more rules should
have a higher encoding length. Formally, we have

L(M) = La([V| + 1) + [V| - log || + log(|V|* + 1)
|V|2) Lo
() + Zm
where we first encode the number of nodes in the graph, then
the events of the nodes, the number and layout of the edges
and finally the rules at each node. For the number of nodes,
we use the MDL-optimal encoding for integers z > 1 (Ris-
sanen 1983), defined as Ly(z) = log™ z + logcy, where
log* z = log z + loglog z + ... and we sum only the pos-
itive terms, and ¢y = 2.865064 is set such that we satisfy
the Kraft-inequality — i.e. ensure it is a lossless code. The
number of edges is encoded using an index over all possibil-
ities, starting at 0 and with |V/|? as an upper bound. For the
edge layout, we use a data-to-model code (Li and Vitinyi
1993), which is an index over a canonically ordered set of
all directed graphs of |V'| nodes and | E| edges.
If a node has less than two successors, no rule is possible,

and L(v) = 0. Otherwise, we compute the encoded length
of the rules at node v with

L(v) = Ln(Jol) + ) L(3)

d,cEv

+ log deg™ (v),

where we first encode the number of rules and then the con-
ditions and consequences. The encoded length of a condition
is computed depending on its type. For a simple term 6 that
makes a comparison on attribute a with operator o, we have

L(#) =log3 +log|A| + L(o | a) + log |domal ,

i.e. we encode the type of the condition with an index over
{or, and, term}, attributes, operators and comparison values.
The encoded length of the operator depends on the choice of
attribute. For categorical attributes, the only possible opera-
tor in our rule language is (=), i.e. L(o | a) = 0, whereas
for numerical attribute, we have to distinguish between (>)
and (<), i.e. L(o | a) = log2 = 1. Like in many rule mining
or decision tree algorithms, we assume a discretization grid
for cut points in conditions (Fayyad and Irani 1992), such
that we can use log | dom a| to compute the encoded length
for both categorical and numerical attributes. If a condition
consists of multiple subconditions either joined with (V) or
(N), we compute the encoded length by

9]

La(6) = Ly(8) = Ln(|8)) + > L(6
i=1
where we specify the unbounded number of subconditions,
before we encode each subcondition, which is either a sim-
ple term 6 or again consists of multiple other conditions.
All of this together gives us a lossless encoding of an
event-flow graph.



Formal Problem Definition

We now have all ingredients for a formal definition of our
data-to-sequence problem.

Minimal Event-Flow Graph Problem Given a dataset with
attributes and event sequences (A, X,Y), find the minimal

rule containing event-flow graph M and cover C, such that
the total encoded cost L(M) + L(Y | M, X) is minimal.

Solving this problem optimally is impossible in practice.
Just finding the optimal cover for a given sequence and
event-flow graph is already NP-complete. This is due to the
equivalence between event-flow graphs and 1-safe nets, for
which computing the optimal alignment with a sequence has
been proven as NP-complete, even if the model is acyclic
(Cheng, Esparza, and Palsberg 1993; Adriansyah 2014).

In practice, we do not know the event-flow graph to
begin with, and the number of possible directed acyclic
graphs grows super-exponentially with the number of nodes
(Robinson 1973). Last, at every branch in the model, we
need to find a rule list, however, mining optimal decision
trees or rule sets with minimal model complexity has been
proven to be NP-complete, too (Hyafil and Rivest 1976; An-
dersen and Martinez 1995).

The search space of our problem also does not show any
trivially exploitable structure, such as monotonicity or sub-
modularity, hence, we resort to heuristics.

Algorithm

To discover good event-flow graphs in practice, we split
the Minimal Event-Flow Graph Problem into multiple parts.
Since each part is already hard to solve by itself, we propose
greedy solutions to each of the subproblems separately. We
discuss the algorithms for these in turn. For a detailed run-
time complexity analysis, we refer to the supplementary.

Computation of a Cover

We start by providing an algorithm to find a good cover for
a given model M, i.e. a cover C with low L(Y | M, X). To
compute a cover with near-optimal encoding length, we use
the intuition that the better a model fits the data, the shorter
the encoded length of the cover should be. This is equivalent
to minimizing the number of | ? Jand (™) codes in Cy,.

This formulation of the problem is equivalent to finding
an optimal alignment between a Petri net and a sequence,
where the standard approach to solve this problem optimally
is to apply an A" search strategy (Adriansyah 2014).

We follow this approach as shown in Algorithm 1 by start-
ing with an empty cover, which we iteratively extend, until
we find a complete cover, i.e. after decoding we have recon-
structed the whole sequence and have arrived at v.. The can-
didates are ranked by their cost, i.e. the number of errors the
model makes in terms of | ? Jand | codes in the cover, plus
a heuristic h, which is an estimate of the cost for making the
candidate a complete cover. If the heuristic function A is ad-
missible, i.e. a lower bound of the true cost, and consistent,
i.e. non-increasing for following states, A” finds the optimal
solution (Hart, Nilsson, and Raphael 1968). One admissi-
ble and consistent heuristic for our problem is the number

Algorithm 1: COVER an Event Sequence

input : event sequence y, event-flow graph M, beam
size w, heuristic h
output: a cover for y using M

1 @ < queue containing the empty cover;
2 while True do
3 C < pop top element from Q);
if C covers both y and M then

| return C

6 foreach possible extension C’ to C do

7 L ¢ < number of (? ) and (~]in C,y;

8 insert ¢’ into @ using priority ¢ + h(C");

4
5

9 | @ « the w best candidates in Q);

of uncovered events in the sequence for which there is no
corresponding node reachable (Adriansyah 2014, p. 66).

Unfortunately, always having the guarantee to find the op-
timum comes quite with a cost of runtime. Therefore, to
cover a sequence in feasible runtime, we modified the A*
search in a beam search fashion, where we only keep the w
best candidates in each iteration.

Discovering an Event-Flow Graph Without Rules

With the cover algorithm, we can now compute our opti-
mization target L(M,Y,X) = L(M)+ L(Y | M, X). To
reduce the search space, we first try to find a compact event-
flow graph without rules. One can interpret this as an event-
flow graph with optimal rules emulated by the cover algo-
rithm. After having an event-flow graph, we can learn rules
that try to reproduce the routing choices of the cover.

To find a good event-flow graph without rules for a given
dataset, we propose a greedy bottom-up search. We start
with an empty graph, which just consists of source vy and
sink v.. Iteratively, we add paths to the model correspond-
ing to the most frequent sequences in the dataset. We only
keep paths, that improve the objective score. For reference,
we provide pseudo-code in the supplementary.

Finding Classification Rules for Path Prediction

After having found an event-flow graph and a cover, we
now discover rules to reproduce the routing decisions by the
cover. At each node with more than one successor, we learn
a rule-based classifier, that predicts the next node for given
meta data. The learning algorithm should produce rules, that
fit the data well, which leads to small L(Y | M, X), be-
cause the rules reduce entropy and thus code lengths in the
code stream of the cover. At the same time the rules should
not get too complex, which would result in high L(M).

One should notice that each node contains its own classifi-
cation dataset. If this node corresponds to infrequent but still
relevant behavior of the data, the number of instances in the
dataset will be low. To deal with datasets containing many
attributes, we need a statistically robust learner that needs
little data to infer meaningful, well-generalizing rules.



For this, we try to find rules with a high effect on predict-
ing the class label p(c | §) —p(c | §). A positive effect means
that setting attributes = such that § = T increases chances
to observe class label c. The effect is robustly estimated by
ns,c +1 ng N +1 ﬁ B

ng + 2 ng+2 2vns+2 2ynz+2°

where n;5 . and nj . are counts how often class label c is
observed if condition § evaluates to T or L, ns and nj are
counts how often condition ¢ in total evaluates to T or L,
and f is a confidence parameter. Higher values for 3 require
more evidence to compute a positive effect and increase ro-
bustness to outliers. (Budhathoki, Boley, and Vreeken 2021)

Maximizing é minimizes our MDL defined objective
score. Applying the logarithm for an information theoretic
interpretation of probability distributions, one can transform
pl(c | 8) —plc | 6 into —1og [p(c, 8) — p(c)p(8)] —log p(d).
This means, rules that have high predictive power on the next
node in the event-flow graph, decrease L(Y | M, X). The
term — log p(J) can be seen as a regularizer for infrequent
rules, which has a positive effect on minimizing L(M).

Mining optimal decision trees or rule sets with mini-
mal model complexity has been proven to be NP-complete
(Hyafil and Rivest 1976; Andersen and Martinez 1995).
Hence, we implemented a greedy approach for finding rules
with maximal effect, which we call greedy effective rule dis-
covery (GERD). We start with an empty rule list and iter-
atively add rules until we have covered all instances in the
dataset. To greedily find a rule with high effect, we first look
at rules with one term and only keep the rule with the highest
effect. If this rule does not have a positive effect, we replace
it with the default rule, which is a rule that always fires and
outputs the class label with the highest support. Otherwise,
we try to extend the rule with one additional term using (A)
and (V), such that the effect of the rule increases. If this is
successful, we again try to extend the rule, else we append
the rule to the list of found rules. We repeat this process until
the list of rules covers all instances in the dataset. For further
details, we provide pseudo-code in the supplementary.

é(d,c) =

Related Work

Event sequence prediction is a broadly studied topic. Much
work deals with the problem of predicting the next event in
a sequence based on past events, without considering ad-
ditional meta data. This includes association rule mining
(Rudin et al. 2011), Markov models (Begleiter, El-Yaniv,
and Yona 2004) and pattern mining (Wright et al. 2015).

Recent work considering meta data to predict sequences
is mostly based on neural networks. The approaches mainly
differ in the feature encoding and the concrete network
architecture. Proposed methods include Long short-term
memory (LSTM) networks (Hochreiter and Schmidhuber
1997) with one-hot encoding (Tax et al. 2017), LSTMs with
embedding techniques (Camargo, Dumas, and Gonzélez-
Rojas 2019), Convolutional neural networks (Pasquadibis-
ceglie et al. 2019) and LSTMs with an adversarial training
scheme (Taymouri, La Rosa, and Erfani 2021).

Although there is work that applies approaches from ex-
plainable artificial intelligence (Mehdiyev and Fettke 2020)

on neural networks for business process prediction, there is
only limited work focusing more accessible models. One
recent exception is given by the data-aware transition sys-
tem DATS (Polato et al. 2018). First, the observed pre-
fixes of event sequences are used to create a state machine.
Which prefixes are mapped to which state is determined by
a state abstraction function. Examples are the list function,
where each unique prefix is mapped to its own state, and
the set function where prefixes with the same set of events
are mapped to the same state. For predicting future events
given an attribute vector, a Naive Bayes classifier estimates
the transition probabilities between states and the path with
the highest probability is predicted.

Inferring state machines from event data is also studied in
software engineering with the goal of anomaly detection and
test case generation but not sequence prediction (Lorenzoli,
Mariani, and Pezze 2008; Walkinshaw, Taylor, and Derrick
2016). Model complexity and interpretability play a minor
role in these approaches and software execution traces are
usually much less noisy than business process data.

Data-to-text generation deals with the creation of text,
which can be seen as a kind of event sequence, from data.
While today much work is based on neural networks, tradi-
tional approaches use handcrafted rule-based templates for
sentences. (Gatt and Krahmer 2018) First work tries to re-
duce the effort in creating templates, but human supervision
is still required (van der Lee, Krahmer, and Wubben 2018).

Outstanding from the above, CONSEQUENCE enables se-
quence generation from data with an accessible white-box
model while requiring no handcrafted templates or rules and
with minimal need for hyper-parameter tuning.

Experiments

In this section, we evaluate CONSEQUENCE on both syn-
thetic and real-world datasets. As a quality measure we use
Levenshtein similarity (Levenshtein 1966) between actual
and predicted sequence. Let p(y1,y2) be the minimal num-
ber of deletions, insertions and replacements to transform
sequence ¥y into sequence ¥y», normalized Levenshtein sim-
ilarity is defined by NLS = 1 — m, ie. NLS €
[0,1] and y; = yo — NLS = 1.

We ran all experiments on a server with two Intel(R)
Xeon(R) Silver 4110 CPUs, 128 GB of RAM and two
NVIDIA Tesla P100 GPUs. Except for LSTM, which uses
the GPU, we report wall-clock runtimes for single-thread ex-
ecution. We provide code and data for research purpose as
well as details for reproducibility in the supplementary?

Baseline Methods

We compare CONSEQUENCE to various baselines that show
different strengths and weaknesses on our task. First, we
compare to a data-to-sequence LSTM.

To show that the order of events matters, i.e. it is not suf-
ficient to just predict occurence and frequency of events,
we also compare to the rule-based multilabel classificator
BOOMER (Rapp et al. 2020). To get a simple baseline for

*http://eda.mmci.uni-saarland.de/prj/consequence
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Figure 2: [CONSEQUENCE is noise-robust] NLS (higher is
better) on test set dependent on the amount of destructive
(left) and additive noise in the training set (right).

ordering the predicted multiset of events, we put events to
positions in the sequence, where we have seen them most
frequently in the training set.

As additional baselines, we use KNN that predicts the
event sequence with a k-nearest neighbor classifier, and
DATS as described in the related work section.

Finally, we use GERD to predict events for each possible
position in the sequence. This means, if the longest sequence
in the training set has length 100, then we learn 100 inde-
pendent classifiers. The length of the predicted sequence is
determined by the lowest positioned classifier that predicts
end-of-sequence. We call this baseline POSCL.

Synthetic Data

First, we evaluate on synthetic data, where we generate data
from ground-truth models with varying properties. We re-
port on the noise-robustness of different methods. For this
experiment, we sampled instances from an artificial ground-
truth model, split the dataset into a training set with 8000
instances and a test set with 2000 instances, and applied
a noise model on the training data. In Figure 2, we show
the NLS for various sequence predictors dependent on the
amount of noise. We consider destructive noise, where for
each event in the dataset, we remove this event with some
probability «, and additive noise, where at each position in
the dataset, we add a random event from 2 with probabil-
ity a.. As one can see, CONSEQUENCE performs well under
realistic amounts of noise, especially being more robust to
noise than its competitors.

While in theory, we allow any classifier for the predic-
tion of successors in the event-flow graph, we propose using
GERD for good reason. In Figure 3, we compare the use
of CONSEQUENCE with three different rule-based classi-
fiers. Besides GERD, we examine CANTMINERPB (Otero
and Freitas 2016), which uses an ant colony optimization to
mine a decision list with low prediction error, and CLASSY
(Proenca and van Leeuwen 2020), which uses MDL to select
a set of classification rules. GERD produces models with a
lower number of decision terms, which are thus easier to be
understood by humans. Furthermore, due to its scaling be-
havior, it is able to deal with a larger number of attributes in
a lower amount of time than its competitors.

— GERD --- CANTMINERPB - CLASSY
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Figure 3: [GERD is fast and produces small models]
Model complexity in number of condition terms (left) and
runtime (right) for GERD, CANTMINERPB and CLASSY
on artificial data with varying number of attributes.

Data n [S| m Q] |A]
Production 255 209 13 57 2
Sepsis 782 733 19 18 23
Rolling Mill 49233 1639 39 270 175
Software 500 200 151 24 12

Table 1: [Statistics for real-world datasets] Number of se-
quences n, number of unique sequences |S|, average se-
quence length 1, size of event alphabet |{2| and number of
attributes | A| for four real-world datasets.

Real-World Data

To show that CONSEQUENCE performs well in practice, we
now evaluate on data from the real-world. We selected four
datasets with different properties as summarized in Table 1.
Production (Levy 2014) is a collection of event sequences
from a production process, which contains only 255 rela-
tively short sequences, from which 209 are unique. Sepsis
(Mannhardt 2016) contains trajectories of Sepsis patients in
a Dutch hospital. We filtered out incomplete sequences and
only considered attributes which were available at the begin-
ning of a sequence. Rolling Mill is a manufacturing event log
of a German steel producer. It stands out with its high num-
ber of instances, unique events and attributes. Software, the
forth and last dataset in our comparison, is a profiling log
of the Java program density-converter (Favre-Bulle 2020)
that takes image files as input and converts them to different
formats and densities, such that they can be used on differ-
ent target platforms like Android or iOS. The events in this
dataset refer to classes called during program execution, and
the attributes refer to command line arguments.

We ran BOOMER, POSCL, DATS, LSTM and CONSE-
QUENCE ten times on these datasets with a random train-
test-split of 80%. In Table 2, we give an overview of the av-
eraged results. CONSEQUENCE achieves the highest NLS on
the testset for datasets with few instances and especially out-
performs other methods on the Software dataset with a large
average sequence length. As expected, the black-box LSTM
performs well with a large training set, which was only avail-
able for the Rolling Mill data, while CONSEQUENCE still



BOOMER PosCL DATS LSTM CONSEQUENCE
Data NLS |Mc| t NLS |Mc| t NLS |My| t NLS t NLS |Mv| |Mc| t
Production 0.28 999 3s  0.28 86 4s  0.35 1712 1s  0.05 82s 042 8 2 24s
Sepsis 0.43 539 13s  0.52 99 16s 0.50 47 5s 0.51 363s 0.58 22 16 156s
Rolling Mill  0.74 1778 2.5h  0.90 10° 14d  0.67 137 13m  0.99 S5h  0.94 104 746 5h
Software 0.20 66 5s  0.69 2004 37s 022 7 2s 052 6m 0.84 929 92  16m

Table 2: [Results on real-world data] We give NLS (higher is better), number of condition terms |M¢| in the model if
applicable (lower means less complex), number of nodes | My | for graph-based models and runtime ¢ on the training set.
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Figure 4: [Sepsis Event-Flow Graph] Excerpt from the model found by CONSEQUENCE on the Sepsis dataset. Dashed arrows
indicate skipped nodes. We provide the complete model in the appendix.
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Figure 5: [CONSEQUENCE has low sample complexity
and scales well] NLS on the test set (left, higher is better)
and training runtime (right) depending on the number of in-
stances in the Rolling Mill training set.

beats the other white-box approaches by a large margin.

CONSEQUENCE produces small and thus better under-
standable models. The models by CONSEQUENCE have less
condition terms than found by BOOMER and less nodes
than the graphs discovered by DATS. This is because both
BOOMER and DATS focus on prediction accuracy and less
on model size. While CONSEQUENCE is not the fastest, it
still runs within a reasonable amount of time.

In Figure 5, we report how the size of the training set im-
pacts the training time and the NLS on the test set. CON-
SEQUENCE already achieves its best performance with 1000
training instances in the Rolling Mill dataset. Although there
are certainly faster methods such as DATS, CONSEQUENCE
shows a linear scaling behavior w.r.t. to the number of in-
stances. Together with the low sample complexity, this en-
ables applicability on a wide range of real-world datasets.

Case Study

Eventually, we want to show with a real-world example
that the models by CONSEQUENCE are understandable and

meaningful. We start with an excerpt of the discovered
event-flow graph for the Sepsis dataset as displayed in Fig-
ure 4. One can clearly recognize the typical flow of a Sepsis
patient in the hospital. The process starts with the arrival
in the emergency room (ER). If the patient has an Oligurie
(malfunction of kidneys) or for other reasons needs an in-
fusion, he or she is provided with liquid and antibiotics. In
any case, leukocytes are counted for further diagnosis. Af-
ter admission to normal care (NC), patients without certain
symptoms, which are potentially younger, are released soon,
while other patients need further treatment.

Evidently, CONSEQUENCE produces inherently accessi-
ble and interpretable models. We provide a similar case
study for the Rolling Mill dataset in the supplementary.

Conclusion

We studied the problem of accurate yet interpretable se-
quence prediction from data. For this, we modeled event
sequences with directed graphs and discovered classifica-
tion rules to explain the relationship between attributes in
the dataset and paths in the graph. We formalized the prob-
lem in terms of the MDL principle, i.e. the best model is the
one that compresses the data best. As the resulting optimiza-
tion problem is NP-hard, we proposed the efficient CONSE-
QUENCE algorithm to discover good models in practice.

Through an extensive set of experiments including a case
study, we showed that our approach indeed produces com-
pact, interpretable and accurate models, is robust against
noise and has low sample complexity, which enables appli-
cability on a wide range of real-world datasets.

Future work might extend CONSEQUENCE to more ap-
plications like prediction of running cases given an event se-
quence prefix, where meta data belongs to events instead of
the whole sequence. A richer modeling language for event-
flow graphs using patterns instead of single event nodes,
could result in even more succinct models, that better fit
complex behavior like concurrent events.
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Algorithm 2: DISCOVER EVENT-FLOW GRAPH

Algorithm 3: Rule Discovery (GERD)

input : event sequences Y
output: event-flow graph M
1 M <+ empty graph;
2 foreach unique sequence y € Y in desc. frequency
do
G+~ M Uy;
if L(M')Y) < L(M,Y) then
5 | M« M

W

6 return G

Appendix

Here, we include supplementary material which could not
be part of our main paper.

Pseudo-Code for Discovering an Event-Flow Graph

In Algorithm 2, we show the pseudo-code for our greedy
bottom-up search to find an event-flow graph without rules.
We start with an empty event-flow graph, which just consists
of the source node v, and the sink node v.. Iteratively, we
add paths to the event-flow graph corresponding to the most
frequent sequences in the dataset. We only keep paths, that
improve the objective score.

Pseudo-Code for GERD

In Algorithm 3, we provide pseudo-code for our rule-based
classifier GERD. We start with an empty rule list and iter-
atively add rules until we have covered all instances in the
dataset. To greedily find a rule with high effect, we first look
at rules with one term and only keep the rule with the highest
effect. If this rule does not have a positive effect, we replace
it with the default rule, which is a rule that always fires and
outputs the class label with the highest support.

Otherwise, we try to extend the rule with one additional
term using (A) and (V), such that the effect of the rule in-
creases. If this is successful, we again try to extend the rule,
else we append the rule to the list of found rules. We repeat
this process until the list of rules covers all instances in the
dataset.

Runtime Complexity Analysis

In this section, we conduct a runtime complexity analysis for
our algorithms.

Algorithm 1 Let b be the branching factor of the search,
i.e. the average number of expansions for nodes in the
search, and let d be the depth of the search tree. Without
limiting the capacity of the open list, A" has worst-case run-
time complexity O(b%). With a beam width parameter w,
the number of expanded nodes in the worst-case scenario is
Z;";Ol b’ +wb(d + 1 — w), i.e. we have a runtime, which is
linear in the depth d and exponential in the beam width w.
The branching factor b strongly depends on the average
degree in the event-flow graph. When expanding an existing
partial cover, we can go to any successor of the current node

in the event-flow graph using a |~ Jor a , or we can have

input : attribute vectors X, label vector z,
confidence parameter (3
output: a list of rules R

1 R+ [];

2 while | X| > 0do

3 R’ < possible rules with one term;

4 r* <= argmax,.cp €(r, X, z, B);

5 if é(r*, X, z,8) > 0 then

6 L r* < default rule;

7 else

8 repeat

R’ + possible one term extensions of 7*;

10 74— argmax, ¢ gy 6(1 X, 2);
11 until 7* remains unchanged;

12 append r* to R;

13 remove instances from X, z covered by 7*;
14 return R

a without moving in the model. This leads to the upper

bound b < 2% + 1.

We find a complete cover by the latest after as many
codes as events in the sequence, and as many codes as
the length of the shortest path from v to v.. In other words,
we can cover sequence and model independently from each
other, which gives us an upper bound on d.

Algorithm 3 Computing the effect of a rule needs a pass
over all n instances. Since at least one instance is covered
in every iteration, the outer loop is called at most n times.
Finding a rule with one term resp. extending a rule with one
term scales linearly in the number of attributes | A|. Since we
require an improvement over € in every iteration of the inner
loop, the number of newly covered instances by a rule is at
least as high as the number of inner iterations. This leads to
a worst-case runtime complexity of O(n? - |A|).

Algorithm 2 In the worst-case, every sequence in Y is
unique, which means that we need n iterations. In each it-
eration, the cover is computed to find extension points in the
model for an uncovered sequence y and to compute the total
encoded length to decide whether the extension is rejected
or not. Since the cover computation is needed n times, the
cover algorithm is the main bottleneck in the algorithm.

Details for Baseline Methods

Here, we provide details for the baseline methods in our ex-
periments and how we selected hyperparameters.

LSTM We tuned hyperparameters by conducting five runs
with a random search on the hyperparameter values. The
model with highest accuracy on a hold-out validation set was
selected. To prevent overfitting, we used dropout and early-
stopping. The set of optimized hyperparameters included
the size of the network, the batch size and the amount of
dropout.



Boomer To show that the order of events matters, i.e. it
is not sufficient to just predict occurence and frequency of
events, we also compare to the rule-based multilabel classi-
fication algorithm BOOMER (Rapp et al. 2020). Each event
together with its frequency gets a label in the multilabel clas-
sification dataset. For example, the event sequence aba pro-
duces the labels {az, by }.

We order the predicted multiset of events by putting
events to positions in the sequence, where they occurred
most frequently in the training set. Formally, we solve the
linear program

n n
maximize E E CijTij
i g

n
subjecttonijzl, j=1...,n
i
n
inj‘:l, i:l,...,n
J
Tij € {071},

where n is the number of events in the multiset, c;; is the
number of times event ¢ occurs at position j, z;; = 1 means
event ¢ is set to position j, and the constraints ensure, that
all positions in the sequence will be filled and no event will
be set to more than one position.

Since BOOMER uses ensemble learning to infer the set of
rules, its focus is on prediction accuracy and less on model
complexity. BOOMER has a hyperparameter to prune indi-
vidual rules, which we activated, such that single rules do
not have unnecessarily many condition terms. We imple-
mented a simple post-processing of the rule set, where we
remove the rules with the lowest weight in the ensemble un-
til prediction accuracy on a held-out validation set decreases.

Regarding the rest of hyperparameters, we used the de-
fault values. The main reason why BOOMER achieves a rela-
tively low NLS is the ordering of events. An extensive hyper-
parameter tuning of BOOMER would not result in a signif-
icant improvement over the reported NLS. Constructing an
additional white-box model, that sorts the predicted multiset
in a correct order is not trivial and would definitely increase
the model complexity. Learning a black-box model such
as an LSTM would tremendously decrease interpretability.
This is another argument for an integrated approach such
as CONSEQUENCE that uses interpretable models to predict
event sequences from meta data.

DATS To build the transition system for DATS, we used
list state abstraction, since it showed best NLS in our exper-
iment setting, which matches the results in the original paper
(Polato et al. 2018).

We also observed that DATS struggles with complex
event logs, which result in large transition systems. There-
fore, we added a frequency filter to the event log to pre-
process the data before building the transition system. Let
y* be the most frequent sequence in the dataset and supp y
denote the support or absolute frequency of y. Then, for a
given threshold o € [0, 1], we only keep sequences in the

dataset with % > «. In our experiments, we tried out

a € {0,0.1,0.2,0.3,0.4,0.5} and reported NLS and | My |
for the best run.

Generation of Artificial Data and Models

For the experiments on synthetic data, we used a self-
implemented generator for the creation of ground-truth mod-
els, i.e. event-flow graphs, and datasets. In this section, we
provide details about this generation process.

First, we generate the attributes in the dataset. The pa-
rameters of this generator include the number of categorical
and the number of numerical attributes to be generated. For
noise robustness experiment in Figure 2, we generated two
categorical and three numerical attributes, and for the exper-
iment in Figure 3, we plugged in values from five to 50 for
each parameter. For each categorical attribute we sample a
value from a discrete uniform distribution over the possible
values, where the number of possible values is determined
by another parameter. For numerical attributes, we sample
from a uniform distribution over the interval [0, 1].

In the second step, we generate an event-flow graph. For
the experiments presented in the paper, we first generated a
list of nested if-then-else rules, e.g.

IF num-feature-3 > 0.043 THEN
Append 7, 19

ELSE
Append 2, 0, 6

IF cat-feature-1 = 3 THEN
Append 1, 11, 17

ELSE
IF cat-feature-2 = 2 THEN

Append 11
Append 1.

After generating such a list of rules, we convert the list to an
event-flow graph. The complexity of the generated rule list
can be controlled via additional parameters. For details, we
refer to our shared source code.

Eventually, we use the event-flow graph to generate a se-
quence for each instance in the dataset. This gives us a syn-
thetic dataset with attributes and event sequences plus an
event-flow graph as ground-truth model.

Hyperparameter Sensitivity

In this section, we report on the hyperparameter sensitity
of CONSEQUENCE. Since we modeled the problem using
MDL, we are almost free of hyperparameters. The cover al-
gorithm as presented in Algorithm 1 contains a beam size
parameter, that provides a trade-off between runtime and
quality of the A™ search. In our classifier GERD as shown
in Algorithm 3, we have a confidence parameter /3 to control
robustness of the discovered classification rules.

We first examine the influence of the beam size parameter
w in the cover algorithm and report the results in Figure 6.
The choice of the beam width has only marginal influence
on the prediction accuracy in terms of NLS on the testset.
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Figure 6: [Hyperparameter sensitivity of the cover al-
gorithm] NLS on the testset (left) and runtime (right) for
the cover algorithm on 1000 instances of the Rolling Mill
dataset with varying beam size parameter w.
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Figure 7: [Hyperparameter sensitivity of GERD] NLS on
the testset (left) and number of discovered condition terms
(right) for CONSEQUENCE using GERD on 1000 instances
of the Rolling Mill dataset with varying confidence £.

For the Rolling Mill dataset, we could observe a slight in-
crease of the NLS from 0.88 for w = 1 to 0.91 for w = 20,
however, w = 10 was already large enough to reach a NLS
of 0.91. Obviously, the choice of w has a larger influence on
the training time of CONSEQUENCE, because a greater beam
width increases the number of necessary computations in the
cover algorithm. Since the relationship between training and
beam size in the plot does look exponentially, we conclude
that the used heuristic in the cover algorithm does its job, by
steering the A" search into the right direction.

In Figure 7, we report on the influence of the confidence
parameter 5 of GERD. Again, the prediction accuracy in
terms of normalized Levenshtein similarity on the test set is
relatively independent from the choice of 5. Higher values
of (3 require more evidence to include condition terms into
the model and thus have a slightly worse fit on noise-free
data. The choice of S has a huge impact on the number of
condition terms in the discovered model. A lower 3 leads to
significantly bigger models.

To produce the results in our experiments, we set w = 10
and f = 2.0. We especially chose 5 = 2.0, because the
same value is used by the authors who proposed the rule
effect estimator é, where 8 = 2.0 corresponds to a 95.45%
confidence level (Budhathoki, Boley, and Vreeken 2021).

Case Study for Rolling Mill Dataset

The event-flow graph found for the Rolling Mill dataset
is equally understandable than model found for the Sepsis
dataset. In Figure 8, we show the graph for the beginning and
the end of the process. First, the plates are rolled at rolling-
stands to meet their customer defined thickness. This hap-
pens at high temperatures and forces, otherwise, thickness
reduction would not be possible. Therefore, the plate sur-
face is not completely leveled by the large rolling stands and
must be adjusted. Plates with a special accelerated cooling
(ACC) treatment or with a special demand on their use, need
an additional pre-leveler activity (rule 1).

After leveling, plates need to cool down, before their pro-
cessing can continue. At this rolling mill, production splits
up into a part for thicker plates and a part for thinner plates,
which both have their own cooling beds ( ). After other
processing steps with an intermediate surface check, plates
wait at the end of the rolling mill for release. Before a plate
can be delivered to the customer, probes must confirm that
the plate meets the product quality requirements (rule 4).
For some plates, an external inspector conducts additional
checks ( ). In spite of the relatively high number of at-
tributes, GERD has produced meaningful rules with a clear
connection between attributes and activities in the process.

Complete Models for Sepsis Case Study

While we could only show excerpts of the discovered mod-
els for real-world data in the main paper, we use the supple-
mentary space to provide more details about the discovered
models on the Sepsis public dataset. In Figure 9, we show
the complete model found by CONSEQUENCE, which is not
remarkably harder to follow than the excerpt in Figure 4.

As one can see in Figure 10, independent classification
rules as found by POSCL do not give a global picture of
the process and are much harder to follow. Furthermore, the
resulting rules show unnecessary redundancy, which makes
it even more time consuming to analyse the model. A tran-
sition system discovered by DATS as shown in Figure 14
can visualize the flow of events in the process, however, the
model also shows unnecessary complexity and redundancy
in spite of filtering. In contrast to the model found by CON-
SEQUENCE, the model found by DATS does not contain
simple, human understandable rules, that give global expla-
nations for the generation of sequences.
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Figure 8: [Rolling Mill Event-Flow Graph] Excerpt from the model found by CONSEQUENCE on the Rolling Mill dataset.
Dashed arrows indicate skipped nodes.
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Figure 9: [Sepsis Event-Flow Graph] Complete Model found by CONSEQUENCE on the Sepsis dataset. An excerpt of this
model was given in the main paper in Figure 4.
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5) [DiagnosticSputum = 1 — Leucocytes, T — CRP]
6) [InfectionSuspected = 0 A SIRSCriteria20rMore = 0 — Admission NC, T — Lactic Acid]
7) [Infusion = 1 — Liquid, DiagnosticLacticAcid = 1 A DiagnosticXthorax = 1 — Antibiotics,
DiagnosticXthorax = 1 A DiagnosticECG = 1 — Admission NC, DiagnosticUrinaryCulture = 1 — Antibiotics,
T — Admission NC]
8) [Infusion = 1 — Antibiotics, DiagnosticBlood = 1 A SIRSCritTemperature = 1 — Admission NC,
T — Leucocytes]
9) [Infusion = 1 V SIRSCritLeucos = 1 — Admission NC, T — CRP]
10) [DiagnosticIC = 0 A SIRSCriteria20OrMore = 0 — END, Age < 34 — Release A,
Hypotensie = 1 A Hypoxie = 1 — Lactic Acid, T — CRP]
11) [SIRSCriteria20rMore = 0 A DiagnosticIC = 0 — END, Hypotensie = 1 — LacticAcid, T — CRP]
12) [Infusion = 0 — END, Hypotensie = 1 — LacticAcid, T — CRP]
13) [Infusion = 0 — END, Hypotensie = 1 — LacticAcid, T — CRP]
14) [Infusion = 0 V Age < 34 — END, DisfuncOrg = 1 A Hypotensie = 1 — LacticAcid,
Hypoxie = 1 — Release A, T — Leucocytes]
15) [Infusion = 0 — END, Hypoxie = 1 A Hypotensie = 1 — LacticAcid,
Hypotensie = 1 A Oligurie = 1 — CRP, T — END]
16) [Oligurie = 0 A Hypotensie = 0 — END, T — CRP]
17) [Oligurie = 0 A Hypotensie = 0 — END, T — Leucocytes]
18) [Hypotensie = 0 — END, T — CRP]
19) [Hypotensie = 0 — END, T — Leucocytes]
20) [Hypotensie = 0 — END, T — CRP]
21) [T — END]

Figure 10: [Sepsis Classification Rules] Model found by POSCL on the Sepsis dataset.
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Figure 11: [Sepsis Transition System] Model found by DATS on the Sepsis dataset with set state abstraction. To reduce the
size of the transition system, we only used sequences with at least 30% frequency compared to the most frequent sequence.



Figure 12: [Rolling Mill Event-Flow Graph] Complete graph found by CONSEQUENCE on the Rolling Mill dataset.
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