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ABSTRACT
When considering a data set it is often unknown how complex

it is, and hence it is difficult to assess how rich a model for the

data should be. Often these choices are swept under the carpet,

ignored, left to the domain expert, but in practice this is highly

unsatisfactory; domain experts do not know how to set k , what
prior to choose, or how many degrees of freedom is optimal any

more than we do.

The Minimum Description Length (MDL) principle can answer

the model selection problem from an intuitively appealing and clear

viewpoint of information theory and data compression. In a nutshell,

it asserts that the best model is the one that best compresses both

the data and that model. It does not only imply the best strategy for

model selection, but also gives a unifying viewpoint of designing

optimal data mining algorithms for a wide range of issues, and has

been very successfully applied to a wide range of data mining tasks,

ranging from pattern mining, clustering, classification, text mining,

graph mining, anomaly detection, up to causal inference.

In this tutorial we give an introduction to the basics of model

selection, show important properties of MDL-based modelling, suc-

cessful examples as well as pitfalls for how to apply MDL to solve

data mining problems, but also introduce advanced topics on im-

portant new concepts in modern MDL (e.g, normalized maximum

likelihood (NML), sequential NML, decomposed NML, and MDL

change statistics) and emerging applications in dynamic settings.
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1 TUTORIAL OUTLINE
Selecting a model for a given set of data is at the heart of what

data analysts do, whether they are statisticians, machine learners
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or data miners. However, the philosopher Hume already pointed

out that the "Problem of Induction" is unsolvable; there are infinitely
many functions that touch any finite set of points. So, it is not

surprising that there are many different principled approaches

to guide the search for a good model. Well-known examples are

Bayesian Statistics and Statistical Learning Theory.

In the last decade information theoretic methods for selecting

the best model slowly but surely became popular in the data mining

community, and have led to state-of-the-art solutions in areas as

diverse as pattern based modelling, change detection, and causal

inference. In this tutorial we will review the state-of-the-art in

information-theoretic model selection based on the Minimum De-

scription Length principle and its implication and applications in

data mining.

The tutorial consists of four parts: (I) Introduction to MDL; (II)

MDL in Action; (III) Modern MDL: Stochastic Complexity and Nor-

malized Maximum Likelihood; (IV) Dynamic Model Selection and

Change-Detection by MDL. In parts I and III we will introduce

basic concepts and give insight in theory, whereas in parts II and IV

we will show how these insights can used to solve open problems

data mining and machine learning. Below we give the outline of

our tutorial, including references to publications we will cover, the

slides and full reference lists will be made available online.
1

Part I. Introduction to MDL
• Model Selection and Occam’s Razor [5]

• Two-Part MDL [20, 23]

• MDL, AIC, BIC, and Kolmogorov Complexity [7, 8, 27]

• Strengths and Weaknesses of 2-part MDL [1]

• Refined MDL [7, 23]

Part II. MDL in Action-Static Data
• Pattern mining and Pattern-based Modelling [2, 14, 28]

• Denoising, Clustering, Anomaly Detection [9, 24, 25]

• Regression and Causal Inference [4, 15]

• Independence Testing and Graphical Modelling [16, 18]

• Rank Estimation for NMF [17]

• Deep Learning [3]

Part III. Stochastic Complexity
• Normalized Maximum Likelihood (NML) [13, 21, 22]

• Theoretical basis for Consistency [7, 26]

• Estimation Optimality and Rate of Convergence [7, 26]

• Latent Variable Models [10, 29, 34]

• Luckiness and High-Dimensional Sparse Models [19]

Part IV. MDL in Action-Dynamic Settings
• Change Statistics [30, 33]
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• Dynamic Model Selection [6, 12, 32]

• Structural Entropy for Change Sign Detection [11]

• Failure Detection, and Emergent Market Detection [31]
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