
Efficiently Discovering Unexpected Pattern-Co-Occurrences

Roel Bertens◦ Jilles Vreeken• Arno Siebes◦

Abstract
Our world is filled with both beautiful and brainy people, but how
often does a Nobel Prize winner also wins a beauty pageant? Let
us assume that someone who is both very beautiful and very smart
is more rare than what we would expect from the combination of
the number of beautiful and brainy people. Of course there will
still always be some individuals that defy this stereotype; these
beautiful brainy people are exactly the class of anomaly we focus on
in this paper. They do not posses intrinsically rare qualities, it is the
unexpected combination of factors that makes them stand out.

In this paper we define the above described class of anomaly
and propose a method to quickly identify them in transaction data.
Further, as we take a pattern set based approach, our method readily
explains why a transaction is anomalous. The effectiveness of our
method is thoroughly verified with a wide range of experiments on
both real world and synthetic data.

1 Introduction
The recognition of anomalies provides useful application-
specific insights [1]. More specifically, the field of anomaly
detection focusses on the identification of data that signifi-
cantly differ from the rest of the dataset — so different that it
gives rise to the suspicion that it was generated by a different
mechanism. Such an anomaly may, e.g., occur because of an
error, it may be an outlier, or it may be a highly unexpected
data point. It is hard, if not impossible, to automatically
distinguish between such different possible origins. Hence,
anomalies should be inspected manually to decide whether it
should, e.g., be removed, corrected, or simply remain in the
data “as is”. One should thus preferably not report an overly
large list of potentially anomalous data points and, at the very
least, that list should be ordered such that the most anomalous
data points appear on top.

For transactional data anomaly detection usually boils
down to pointing out those transactions that show unexpected
behaviour. This unexpected behaviour can manifest itself in
different ways and each detection algorithm is limited to find
only those anomalies which fit the corresponding framework.
For example, much work has been done to detect unexpected
behaviour which can be expressed by the compressed size of
a transaction given a pre-processed model [23, 3]. That is,
transactions that badly fit the norm of the data are deemed
to be anomalous. Another example is to score transactions
based on the number of frequent patterns that reside in it
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[13]. Yet another method scores transactions based on items
missing from a transaction which were expected given the
set of mined association rules [19]. All these methods have
their own advantages, however, none of them is able to detect
an anomaly based on the presence of multiple items in a
single transaction that are not expected to occur together.
Therefore in this work we focus on this class of anomalies,
not to improve existing methods, but to improve the field
of anomaly detection by making it more comprehensive.
Since there are many ways in which a transaction can be
anomalous, there should be a wide variety of algorithms
detecting complementary sets of anomalies.

In addition to highlighting the transactions that show
anomalous behaviour, our method describes anomalies in
more detail by providing the most unlikely co-occurrence
of patterns in that transaction. As an example consider a
dataset containing people’s drinking habits where roughly
half of the people drinks soft drink C and the other half
drinks soft drink P. Now each individual who drinks C or P
is not surprising. Moreover, someone drinking both C and P
also does not seem surprising as it can be compressed well
using the methods of [23, 3], it contains multiple frequent
patterns [13] and there is nothing missing [19]. However, in
this dataset almost everyone drinks either C or P, but not both.
Therefore, someone drinking both C and P is an anomaly,
as drinking both is unexpected. We propose to score each
transaction based on the most unlikely co-occurrence between
patterns and therefore our method is able to find the described
class of anomalies.

For this example, the score we introduce is based on the
well-known interestingness measure lift of an association rule
[26] (also known as its interest [5] and closely related to the
novelty of an association rule [15]). More precisely, we take
minus the log of the minimal lift of the two association rules
C→ P and P→ C. So, the difference is that we do not score
a rule, but a transaction and do so by the minimal lift of all
the rules that apply to this transaction.

The higher the score, the more anomalous the transaction.
So, if both C and P are frequent, a transaction t containing
both is anomalous if {C,P} is infrequent, and the more
infrequent it is, the more anomalous t is. Note that this is the
opposite of rare patterns, or rare association rules [14]. For
rare rules either C, P, or both should be infrequent, while the
confidence of, e.g., C→ P should be high.

For rare association rules either C or P is expected to



be infrequent, and multiple or adaptive minimal support
thresholds can be used for efficient discovery. Since we
assume both C and P to be frequent and only {C,P} to
be infrequent such ideas cannot be used here. Rather, an
exhaustive algorithm requires all frequent sets with a support
equal or larger than 1, since any of these may be formed by
an unexpected combination of patterns. Finding the most
surprising transactions using this humongous set is infeasible
on all but the most trivial data sets. For this reason we
introduce a heuristic algorithm based on the code tables
computed by algorithms such as KRIMP [27] or SLIM [24].

In extensive experiments we firstly show that this heuris-
tic algorithm finds all anomalies we hide in synthetic data.
Secondly, we show that the transactions found to be anoma-
lous in real world data sets are indeed strange. For example, in
the well-known Adult data set, the top-ranked transaction con-
tains the very unexpected co-occurrence of someone whose
attribute sex is female yet whose relationship status is hus-
band. It is highly probable that this is a mistake, but it is
certainly an anomaly the data scientist should be aware of
before analysing the data set.

2 Notation
We consider transaction datasets D containing |D| transac-
tions. Each transaction t contains a subset, of size |t|, of the
items from the alphabet Ω. Categorical data consists of |A|
attributes, where each attribute Ai ∈ A has a domain Ωi, and
can also be regarded as transaction data by mapping each
attribute value pair to a different item. We assume there is no
missing data. All logarithms are to base 2, and by convention
0 log 0 = 0. We use P (·) to denote a probability function.

3 Anomalies in Transaction Data
What is an Anomaly? Anomalies are also referred to as
abnormalities, discordants, deviants, or outliers in the data
mining and statistics literature [1]. As we consider transaction
data we use the following definition.

DEFINITION 3.1. A transaction is anomalous when it devi-
ates from what we expect considering the whole dataset.

Given this definition an anomaly can manifest itself in
different ways, resulting in multiple classes of anomalies
for transaction data. In this section we recall two familiar
classes of anomalies, define one new class, and we show how
to identify all of them by formalising appropriate anomaly
scores. We want to emphasise again that the scores for
different classes of anomalies are complementary to each
other. Further, for ease of interpretation and computation we
take the negative log-likelihood for the scores in each class.

3.1 Class 0: Unexpected Transaction Lengths A trans-
action can be anomalous not as a result of the patterns it
contains, but solely on the basis of its deviating length.

DEFINITION 3.2. A class 0 anomaly is a transaction with
significantly deviating transaction length.

We propose an anomaly score which represents the number
of bits needed to describe the transaction length given all
transaction lengths in the data, i.e. for a transaction t we have

score0(t) = − log(P (|t|)) = − log

(
|{t′ ∈ D | |t′| = |t|}|

|D|

)
.

The intuition behind the subscript 0 for this score is that we
take no patterns into account to identify these anomalies. As
it is a fairly trivial score we will not further evaluate it.

3.2 Class 1: Unexpected Transactions When a transac-
tion contains very little structure, i.e. few or no frequent
patterns, it can be regarded to be anomalous.

DEFINITION 3.3. A class 1 anomaly is a transaction that
contains very little of the regularity conveyed by the rest of
the dataset.

The state of the art in transaction anomaly detection focusses
on what we call class 1 anomalies. For example, OC3

[23] scores transactions using a descriptive pattern set S.
Transactions containing few of these patterns but mostly
singletons will get a higher score. That is, because such a
transaction cannot be explained well by the pattern set that is
descriptive for the data. We generalise this idea by defining a
score based on the probability of a transaction. More formally,
score1 scores each transaction based on the number of bits
needed to describe it, i.e. for a transaction t we have

score1(t) = − logP (t) .

For compression based methods such as OC3 this score is
defined by the compressed length of the transaction given the
model of the data. However, any method that can assign a
probability to a transaction based on the whole data can be
used here. Note that, as transactions are scored as a whole,
this approach will unlikely detect unexpected co-occurrences
of patterns. For example, using OC3, all patterns that describe
a transaction will contribute to its score independently. As
much work has been done to detect these anomalies we will
not further evaluate their identification, but focus on the next
class of anomalies.

3.3 Class 2: Unexpected Co-occurrences The focus of
this paper lies on identifying unexpected co-occurrences of
patterns.

DEFINITION 3.4. A transaction contains a class 2 anomaly
when it contains two patterns that occur much less frequently
together in the data than what could be expected from their
individual supports.



As this definition is somehow the opposite of that of a
pattern, which is formed when two smaller patterns occur
together more frequently than expected, we can also use the
terms negative pattern or negative interaction pattern.

To identify anomalous transactions based on class 2
anomalies we would like to score a transaction based on
the unexpectedness of the co-occurrences of the patterns
contained in it. That is, we propose to rank a transaction based
on its most unexpected pattern co-occurrence. Intuitively this
means that for each transaction we compute the number of
bits we need to explain the most unlikely co-occurrence given
a pattern set S and the data. For a transaction t we thus have

score2(t) = max
{X,Y ∈S|X,Y⊆t}

− logP (XY ) + log
(
P (X)× P (Y )

)
.

In the remainder of this paper we refer to score2 as the UPC
score, for Unexpected Pattern Co-occurrence. We compute
P (X) as X’s support or relative frequency in the data.

Given a UPC score for a transaction we can readily
explain its anomalousness as we know which co-occurrence
of patterns is responsible for the score. Therefore our method
has the nice property of producing very interpretable rankings.

Our score is related to the concept of lift [21] used in
the context of association rules. In our setting we use it
to describe the difference between two patterns appearing
together in a transaction and what would be expected if they
were statistically independent. Therefore, the higher our score
the more unexpected the pattern co-occurrence.

Scores that are constructed to identify class 1 anomalies
are not able to detect these class 2 anomalies as they look
at all patterns independently. For example, OC3 [23] and
COMPREX [3] will not give a class 2 anomaly a higher score
as both individual patterns are frequent and will add little to
the anomaly score. Similarly, the frequent pattern based
method from He et al. [13] and the method from Narita
et al. [19] have no means to give higher scores to class
2 anomalies. As a result, methods for identifying class 1
anomalies do not identify unexpected co-occurrences, while
these actually do indicate anomalous behaviour.

Which patterns to consider Given the relation between our
score and the lift of association rules, a straightforward way
to find high scoring transactions may seem to simply mine
for low-lift association rules. However, to maximize the score
the individual patterns X and Y should have a support as
high as possible while XY should have a support as low as
possible. That is, we should mine for all rules — including
those with a support of 1 — to ensure that we do not miss the
most interesting, most anomalous transactions.

Clearly this quickly becomes infeasible for all but the
smallest data sets. Not only because discovering all these
rules will take an inordinate amount of time, but also since
the post-processing of all these rules necessary to identify the
most surprising transactions becomes a rather daunting task.

The alternative we take is by starting from a set of
patterns S. We compute the score of each pair of patterns
from S and identify those transaction in which pairs with a
(very) high score occur.

Clearly, not just any pattern set will do as we want to
find the highest scoring transactions. The set of all frequent
patterns F will be far too large to be able to consider the
interactions between each pair of patterns. In the worst case
we need to consider each co-occurrence of patterns for each
transaction, thus leading to a computational complexity of

O(|D| × |F| × |F|) .

Choosing a higher minimum support will yield smaller pattern
sets but as a result we might miss important patterns. We
could use condensed representations such as closed [20]
or non-derivable [6] frequent patterns to remove as much
redundancy as possible, however these sets will still be too
large. By sampling [12] patterns we can attain small sets
of patterns, however, the choice of the size of the sample
determines which anomalies one will (likely) find. A set that
is too small might miss some important patterns, but a set that
is too large probably contains redundancy and again becomes
a bottleneck in our approach. Since it is not straightforward
to choose the right size for the required pattern set, we choose
to use KRIMP [27] or SLIM [24] to automatically find small
descriptive pattern sets that describe the data well without
containing noise or redundancy. Using these pattern sets it
will hold that |S| � |F|. We thus dramatically reduce the
complexity, making the UPC score practically feasible as we
will show in our experiments in Section 6. Using such a vastly
smaller set induces, of course, the risk that we miss anomalies.
However in other research we have seen that the pattern sets
chosen by KRIMP and SLIM are highly characteristic for the
data. The experiments in Section 6 bear out that this is also
the case here: all anomalies we inject in synthetic data are
discovered using these small sets only.

4 How to use our scores
In the process of explorative data mining, one has to consider
that all 3 classes of anomalies we identify give different
insight, i.e., one should instantiate all 3 scores and investigate
the top-ranked anomalies for each class. Here, our focus is of
course on class 2 anomalies.

To determine which of the UPC top-ranked transactions
to investigate, as well as to verify the significance of the
scores, we propose two bootstrap methods. Recall that
bootstrap methods consider the given data as a sample, and
generate a number of pseudo-samples from it; for each
pseudo-sample calculate the statistic of interest, and use the
distribution of this statistic across pseudo-samples to infer the
distribution of the original sample statistic [7].



4.1 Significance test For a synthetic dataset it is easy to
test the significance of anomaly scores, as we can generate
data with and without anomalies for which the resulting scores
must clearly differ. For real world data this is unfortunately
not the case as we do not know which and how much
(negative) patterns the data comprises. Nevertheless, to give
a measure of significance we use the following bootstrap
approach. We randomly sample transactions from our original
dataset (with replacement) to retrieve an equally sized new
dataset. We repeat this a thousand times and save the highest
anomaly score for each dataset. Then we repeat this process,
but we first remove the transaction with the highest UPC
score from the sample set. That is, the top-ranked anomaly
is definitely not present in the bootstrap samples of the
second kind and may or may not be present in the bootstrap
samples of the first kind. The bigger the difference between
the distributions of scores with and without the top-ranked
transaction, the more significant the top-ranked anomaly.

4.2 Which transactions to investigate Choosing the right
parameter value is never easy in explorative data mining.
As the UPC score produces a ranking of all transactions,
where higher scores indicate a higher chance on being
anomalous, it does not need any parameters. To determine
which transactions to investigate based on this ranking we
employ Cantelli’s inequality to identify the transactions that
significantly differ from the norm.

THEOREM 4.1. Cantelli’s inequality [10]. Let X be a
random variable with expectation µX and standard deviation
σX . Then for any k ∈ R+,

P (X − µX ≥ kσX) ≤ 1

1 + k2
.

Smets and Vreeken [23] proposed a well-founded way to
determine threshold values to distinguish between ‘normal’
and anomalous transactions. The positive class comprises
anomaly scores for ‘normal’ transactions and based on the
distribution of these scores we can choose a threshold by
choosing an upper bound on the false-negative rate (FNR). For
example, if we choose a confidence level of 10%, Cantelli’s
inequality tells us that this corresponds to a threshold θ at 3
standard deviations from the mean, given by θ = µ + kσ,
with k = 3 in this case. This means that the chance on a
future transaction with an anomaly score above the threshold
is less than 10%, see Figure 1.

To compute these thresholds we need the distribution of
the positive class, i.e. the anomaly scores for all ‘normal’
transactions. Because we have only one dataset available
which can contain both transactions from the positive and
negative (actual anomalies) class, we use again a bootstrap
approach. We generate bootstrap datasets by randomly
sampling transactions (with replacement) from the original
dataset. We then use all anomaly scores from all bootstrap
datasets to estimate the distribution.

Figure 1: Example of setting a threshold using Cantelli’s
inequality. Based on the positive class we compute a
threshold corresponding to a false-negative rate of 10%.

5 Related Work
In this paper we study anomaly detection in binary transaction
data. As anomalies are referred to in many different ways,
mostly with slightly different definitions, we refer to [17]
and [1] for in-depth overviews on this field of research. In
general, most anomaly detection methods rely on distances.
Here we focus on discrete data, nominal attributes, for which
meaningful distance measures are typically not available.

Of the methods that are applicable on transaction data,
that of Smets and Vreeken [23] is perhaps the most relevant.
They propose to identify anomalies as those transactions that
cannot be described well by the model of the data, where as
models they use small descriptive pattern sets. Their method
OC3 works very well for one-class classification, however it
is not able to identify unexpected co-occurrences in the data.
Akoglu et al. [3] proposed COMPREX which takes a similar
approach in that they also rank transactions based on their
encoded length. The difference is that they do not use a single
code table, but a code table for each partition of correlated
features. Although this method achieves very good results it is
only suitable for categorical data and not for transaction data
in general. Note that, following our generalised anomaly
score for class 1 anomalies, any method that provides a
probability for a transaction can be used. Examples based
on pattern sets are those of Wang and Parthasarathy [28] and
Mampaey et al. [16].

He et al. [13] rank transactions based on the number of
frequent patterns they contain given only the top-k frequent
patterns, and Narita et al. [19] rank transactions based
on confidence of association rules but need a minimum
confidence level as parameter. All these methods have no
means to identify class 2 anomalies.

In the Introduction we already mentioned the relation
between our score and lift [5]. As stated there, the difference
is that we score transactions rather than rules and we give an
algorithm to quickly discover the highest scoring transactions.
Our notion of anomaly is also related to the conditional
anomalies introduced in [25]. In our running example, C
could be seen as the context that makes a purchase of P
unexpected in their terminology. The difference is that we do



not expect the user to define such contexts, they are discovered
automatically. Moreover, we use a small set of patterns to
discover all the class-2 anomalies rather than probabilistic
models on context and other attributes.

To compute the UPC score we need the characteristic
patterns of the data. In general, we can use the result
of standard frequent pattern mining [2, 20] although this
incurs a high computational cost. Instead, we can resort
to pattern sampling techniques [12, 4], yet then we have to
choose the number of patterns to be sampled. Alternatively,
we [22] proposed to mine such pattern sets by the Minimum
Description Length principle [11]. That is, they identify
the best set of patterns as the set of patterns that together
most succinctly describe the data. By definition this set is
not redundant and does not contain noise. KRIMP [27] and
SLIM [24] are two deterministic algorithms that heuristically
optimise this score. Other pattern set mining techniques,
especially those that mine patterns characteristic for the data
such as [16, 9, 28], are also meaningful choices to be used
with UPC.

6 Experiments
In this section we evaluate the power of the UPC score to
identify class 2 anomalies. Firstly, we show how we generated
synthetic data needed for some of the experiments. Secondly,
we provide a baseline comparison where we show that the
size of the input set of patterns is of great importance. Next
we show the performance of UPC on synthetic data and show
its statistical power. Lastly, we show some nice results of
class 2 anomalies on a wide variety of real world datasets.

We implemented our algorithms in C++ and generated
our synthetic data using Python. Our code is available for
research purposes.1 All experiments were conducted on a 2.6
GHz system with 64 GB of memory.

6.1 Generating Synthetic Data Here we describe how we
generated both transaction and categorical synthetic data.

Transaction Data To generate synthetic datasets we first
choose the number of transactions |D| and the size of the
alphabet |Ω|. We generate a set P of random patterns,
choosing a random cardinality from 3 to 6 items, and a
random support in the range of [5-10%]. In addition we
generate 2 patterns with a support of 20%, which we call the
anomaly generators, and which we add to the data such that
they only occur together in a single transaction; that is the
anomaly. In addition, each singleton from Ω is added to each
transaction similarly with a probability of 10%.

Categorical Data To generate categorical data we take
a similar approach. Firstly, we choose the number of

1http://eda.mmci.uni-saarland.de/upc/

Figure 2: SLIM pattern set versus closed frequent pat-
terns (baseline). We computed the UPC scores on 5 000
transactions using both input sets with a minimum support of
1 for SLIM and at 5% for the baseline. Using both input sets
S the anomaly is always ranked first, but for the baseline both
|S| and the runtime quickly explode when we increase the
number of planted patterns in the data. The runtimes include
the time needed to compute the used input set.

transactions |D|, the number of attributes |A| and the alphabet
size per attributes |Ωi|. We generate random patterns with
the same settings as for transaction data and again first add
the anomaly generators to the dataset. We then try to add
the other patterns as long as they fit and do not interfere with
the anomaly. Then we fill the unspecified attributes for each
transaction with random singletons.

6.2 Baseline Comparison Before investigating the relia-
bility of UPC, we first show its efficiency. To emphasise the
necessity for using small pattern sets as input, we compare the
use of all closed frequent patterns with a minimum support
at 5% to the use of SLIM [24] pattern sets with a minimum
support of 1. We generated random transaction data with |D|
= 5 000, |Ω| = 50 and we let |P| range from 10 to 35 patterns.
We then ran our method on both input sets keeping track of
the runtimes and the size of the input set S for which we
have to consider all |S| × |S| possible combinations. Both
approaches always rank the anomaly highest, therefore fur-
ther we can focus on the runtime and the number of patterns
that were considered. The runtimes include the time needed
to compute the pattern sets, which are negligible in light of
the exponential time the baseline approach takes in the size of
S . Figure 2 shows the results which are averages over 5 runs
per setting. For higher minimum support thresholds the base-
line approach starts missing important patterns and it cannot
identify the anomaly. Other settings for generating synthetic
data lead to a similar figure. Since using a SLIM pattern set
as input set for UPC we attain similar results compared to the
baseline approach, that is we correctly identify the planted
anomaly, in the remainder of this paper we always use the
SLIM pattern set to compute the UPC score.

6.3 Performance on Synthetic Transaction Data The
goal of this experiment is twofold. Firstly, we show that
our method is able to identify class 2 anomalies in transaction
data. Secondly, we justify the definition of the different



Table 1: The performance of UPC on transaction data.
The number of generated transactions is represented by |D|,
the alphabet size by |Ω|, and the number of synthetic patterns
by |P|. All experiments were performed 10 times and the
average ranks and runtimes (in seconds) are reported.

Generated Data UPC OC3

|D| |Ω| |P| rank time (s) rank time (s)

5 000 50 100 1 4 2 420 1
5 000 100 100 1 6 2 757 2
5 000 100 200 1 18 2 433 4

10 000 100 100 1 11 5 464 4
20 000 50 100 1 18 8 281 4

Table 2: The performance of UPC on categorical data.
Each dataset contains 5 000 transactions over |A| attributes,
each with an alphabet size of |Ωi|. |P| refers to the number of
synthetic patterns. All experiments were performed 10 times
and average ranks and runtimes (in seconds) are reported.

Generated Data UPC COMPREX

|A| |Ωi| |P| rank time (s) rank time (s)

20 5 100 1 1 3 119 221
50 5 100 1 6 2 028 885

100 5 100 1 29 3 121 5 477
20 10 100 1 1 2 244 429
50 10 200 1 5 2 714 1 978

classes of anomalies as we show that the class 2 anomalies
are not identified by the state of the art class 1 anomaly
detector, which is OC3 [23]. We emphasise again that as
a result both scores should not be further compared as they
are complementary to each other.

We generated random datasets as described in Section 6.1.
The results in Table 1 show that UPC always ranks the
anomaly highest and that OC3 does not identify them.

6.4 Performance on Synthetic Categorical Data Know-
ing that UPC correctly identifies class 2 anomalies for trans-
action data, here we compared it to the state of the art on
categorical data, which is COMPREX [3]. Again we note that
we only compare these methods to show that class 2 anoma-
lies are different from class 1 anomalies and that these two
methods thus should be used complementary to each other.

We generated random datasets as described in Section 6.1
with various settings. The results in Table 2 show that UPC
always ranks the anomalous transaction first and COMPREX
is not able to identify it (gives it a much lower rank).

6.5 Statistical Power Our aim here is to examine the
power of the UPC score for identifying class 2 anomalies.

Figure 3: [Higher is better] Statistical power of UPC.
Whereas OC3 does not identify any class 2 anomalies, UPC
does perfectly with large enough supports. We observe the
same behaviour for categorical data comparing UPC and
COMPREX (not shown in this plot). The growth factor on the
x-axis describes the increase of the pattern supports.

For this purpose, we perform statistical tests using synthetic
data. To this end, the null hypothesis is that the data contains
no class 2 anomalies. To determine the cutoff for testing the
null hypothesis, we first generate 100 transaction datasets
without the single co-occurrence between the 2 anomaly
generators, whereafter we generate another 100 datasets with
this co-occurrence included. For all datasets we choose |D|
= 5 000, |Ω| = 25 items and |P| = 100. Next, we report
the highest UPC score for all 100 datasets without anomaly.
Subsequently, we set the cutoff according to the significance
level α = 0.05. The power of the UPC score is the proportion
of the highest scores from the 100 datasets with anomaly that
exceed the cutoff. Note that, we only look at the highest score
for each dataset as we know that this must be the anomaly
for the datasets containing it. We show the results in Figure 3
while varying the range from which we randomly choose the
supports for the patterns in P from [4-8%] to [8-16%] and
the support for the anomaly generators from 16% to 32%. In
Figure 3 we label these linearly growing supports with their
growth factor from 1 to 2. With other settings to generate the
data we observe the same trend. Again, only to emphasise
that methods to identify class 1 anomalies are not suitable
to discover class 2 anomalies, in Figure 3 we also plotted
the statistical power of OC3 regarding class 2 anomalies. As
COMPREX is not applicable to transaction data we performed
a similar experiment on categorical data. This resulted in a
similar plot with UPC at the top and COMPREX at the bottom.

In Figure 4 we show the distribution of the highest scores
for both the datasets with and without an anomaly and with
pattern supports in range [7-14%] and an anomaly generator
support at 28%. We can see a clear distinction between the
scores for ‘normal’ and anomalous transactions.

6.6 Real World Data To show that class 2 anomalies
actually exist, are not identified by the state of the art in
anomaly detection, and can give much insight we performed
multiple experiments on real world datasets from various
domains. We used the Adult and Zoo datasets from the
UCI repository, together with the Mammals [18] and ICDM



Figure 4: Significance of UPC scores. The plot shows a
clear separation between the highest UPC scores for random
synthetic datasets with and without class 2 anomalies.

Abstracts [8] datasets. Note that, we cannot provide the
reader with the accuracy of our method because anomalies can
manifest themselves in many different forms, e.g. unexpected
behaviour or mistakes in the data, and no ground truth for
these datasets is available. However, we aim to give insightful
examples instead.

Adult The Adult dataset contains information about 48 842
people such as age, education, and marital-status and is used
to predict whether someone’s income exceeds $50K a year.

We computed a ranking based on the UPC score and
found some interesting anomalies. The top-ranked transaction
contains the very unexpected co-occurrence of someone for
which the attribute sex is female yet for whom the relationship
status has the value of husband. The following 3 anomalies
are persons with a similar situation but with the patterns
reversed. That is, the dataset contains 3 persons whose sex
is male and whose relationship is wife. The OC3 rankings of
these first 4 people are 115, 148, 89 and 4 090, respectively.
These examples show that class-2 anomalies indeed exist in
real datasets, and that UPC is effective at identifying these.
Clearly, each of these four anomalies is an error, but that does
not make them less of an outlier. In fact, one of the goals of
outlier detection is to find errors.

To get an idea of the significance of the results we
performed the significance test as described in Section 4.1.
Figure 5 shows the difference in the distribution of highest
scores for bootstrap samples from data without (blue), resp.
from data including (red) the top-ranked transaction from
the original dataset. Figure 5 gives insight in how much this
transaction deviates from the norm, as the difference between
the two distributions can only be caused by this transaction.

Zoo The Zoo data contains 17 attributes describing 101
different animals. We performed the bootstrap method
described in Section 4.2 to determine which transactions are
worth investigating. To this end, we generated 1 000 bootstrap
samples for which we computed the anomaly scores for all
transactions. In Figure 6 we show the distribution of all
these scores with a histogram. Further, we show the anomaly
scores of the 5 highest ranked transactions in the original

Figure 5: Significance test on Adult dataset. This plot
shows the difference in the distribution of highest scores
for bootstrap samples without (blue) and possibly with (red)
the highest ranked transaction from the original dataset.

dataset together with the FNR corresponding to a θ equal to
their score. That is, with an FNR not higher than 8% only
the top-ranked transaction scores above θ. This transaction
contains information about the platypus (duck bill) and from
our results we found that the co-occurrence causing this high
score is that the platypus is the only oviparous mammal in
the dataset. Further, we see that the chance that the second
ranked animal belongs to the positive class is not more than
11%. This is the scorpion for which UPC found that it is the
only animal without teeth that is not oviparous.

Clearly, both these anomalies are well-known as some-
what weird species and, so, these finds may not seem that
interesting. However, the algorithm does not know much
biology and yet it finds both anomalous species as well as the
explanation for why they are seen as somewhat weird.

ICDM Abstracts Next, we ran our algorithm on a dataset
comprising the abstracts from the ICDM conference, after
stemming, and removing stopwords.

For this data we expect co-occurrences of terms used in
different research fields to rank highly. The abstract with
the highest UPC rank contains both the frequently used
words ‘pattern mining’ and ‘training’. Given that (frequent)

Figure 6: Anomalies in the Zoo dataset. The histogram
shows the estimated distribution of anomaly scores. The
vertical lines show the scores of the top-5 ranked anomalies
in the original dataset, together with the false-negative rates
corresponding to the decision threshold for their score.



Figure 7: UPC in action; top-ranked anomalies on the
Mammals dataset. The explanations for these highly ranked
area’s are as follows. On the left we see that the habitat of the
beech marten (blue) only intersects with that of the moose,
European hedgehog and mountain hare (green) at the (red)
area pointed to by the arrow. On the right we see the habitat
of the Etruscan shrew (blue) only intersects with that of the
raccoon dog (green) at the (red) area pointed to by the arrow.

pattern mining is unsupervised while methods like ”train
and test” are usually applied in a supervised setting, their
combination is genuinely surprising. From the corresponding
abstract it transpires that the term ‘training’ is used to refer to
physical exercise rather than that of an algorithm. Hence, the
discovered anomaly points to an unusual application rather
than to an unexpected combination of techniques.

Other highly ranked abstracts show similar unexpected
co-occurrences, for example ‘learning’ on one side and
‘frequent pattern mining’ on the other or ‘frequent pattern
mining’ and ‘compare’, which suggest that exploratory
algorithms are difficult to compare.

Mammals The Mammals dataset consists of pres-
ence/absence records of 121 European mammals within
2 183 geographical areas of 50 × 50 kilometres. In this
dataset an anomaly constitutes two large territories of (groups
of) animals which only overlap in a small region.

Figure 7 shows two top-ranked area’s (in red and pointed
to by arrows) and readily explains why these are anomalous.
For each of these two area’s two groups of animals share
this territory where the rest of their territory is completely
separated. On the left in Figure 7 we see that the large habitat
of the beech marten intersects with that of the moose, the
European hedgehog and the mountain hare only in this single
area. On the right in Figure 7 we see a similar phenomenon
for the Etruscan shrew on one side and the raccoon dog on
the other. The ranks of these two areas using OC3 are 591
and 294 out of the 2 183, respectively. There are also top-
ranked areas that are explained by two groups of animals
which habitat intersects in multiple areas (of course including
the area that has received this score).

7 Discussion
The experiments show that although the state of the art in
anomaly detection is not able to identify the newly defined
class 2 anomalies, we can identify them using our new UPC
score. We demonstrated that a naive baseline approach using
closed frequent items as input set quickly becomes infeasible
when the number of patterns present in the data grows. Using
a SLIM pattern set to compute our UPC score, however, we
attain similar results in a fraction of the time. We showed
the statistical power of our method which scores transactions
containing planted class 2 anomalies significantly higher than
‘normal’ transactions. Moreover, both on transaction and
categorical synthetic data we showed that UPC always ranked
the planted anomaly at the top.

From our experiments on real world datasets we find
that the class 2 anomalies do actually exist and can provide
useful insights. That is, because next to identifying interesting
transactions the UPC score also readily explains which co-
occurrence of patterns is responsible for the transaction’s
anomaly score. For example, in the Adult dataset we found
a very unexpected individual who is described as being a
female husband. Further we showed how a UPC ranking
can be used to study the significance of identified anomalies
using a bootstrap approach. For example, in the Zoo dataset
we found that the platypus, which is special because its the
only oviparous mammal, has a less than 8% chance on being
‘normal’ given the data. Each of these class 2 anomalies were
not identified, i.e. ranked low, using OC3 or COMPREX.

8 Conclusion
The recognition of anomalies provides useful application-
specific insights [1]. More specifically, the field of anomaly
detection focusses on the identification of data that signif-
icantly differ from the rest of the dataset. There are many
reasons for anomalies – ranging from errors to outliers to
simply highly unexpected data points – however, whatever
the reason, the anomalies should be brought to the attention
of the data miner.

There are also many ways in which a data point (or a
subset of the data) can differ from the rest of the data set.
That is, there are many types of anomalies [1]. In this paper
we introduced a new class of anomalies which consist of
unexpected co-occurrences of patterns. In a world where the
vast part of the population drinks either soft drink C or soft
drink P but not both, it is surprising to find someone who
apparently drinks both.

We introduced the UPC score which intuitively scores
a transactions based on its most unexpected co-occurrence
of patterns. Next we introduced an algorithm that discovers
and ranks transactions with a high UPC score. Moreover, it
does so efficiently by relying on a small set of characteristic
patterns [24] rather than on the full set of low support patterns
(which would make an algorithmic approach intractable



quickly). Finally we introduced a statistical test to decide
whether or not an anomaly is significantly anomalous.

We tested our methods firstly on synthetic data. These
experiments show that we are able to reliably discover the
anomalous patterns we planted in a wide range of different
settings and circumstances. Moreover, these experiments
show that the anomalies identified by state of the art methods
for anomaly detection are of a different class and that these
methods are not able to identify planted anomalies.

That we can discover a new class of anomalies does not
make them into an interesting class of anomalies. To illustrate
that our anomalies indeed provide interesting and useful
information we also did experiments on four real world data
sets, viz., Adult, Zoo, ICDM Abstracts, and Mammals. In all
cases the identified transactions with a high UPC score were
truly anomalous. None of these examples were discovered
using the state of the art anomaly detection algorithms

In some cases – such as on the Adult data set in which we
discovered a female husband – the identified anomalies are
very likely errors. In other cases – such as on the Zoo data set
where we discovered the platypus – the discovered anomalies
are not an error but simply a highly surprising combination
of patterns: whereas laying eggs is quite normal, so is being
a mammal, but being an egg-laying mammal is truly special.

Whatever the reason, these anomalies provide useful
information to the analyst; whether they point to errors that
probably should be corrected, such as female husbands, or
to genuinely new information, such as the existence of egg-
laying mammals.

While we tested our approach against state of the art,
this does not mean that we claim that our methods are better.
Rather, the experiments were performed to show that our
methods are complementary to those methods. When looking
for anomalies, one should not use one method, but many.
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