
Jilles Vreeken & Nikolaj Tatti & Bart Goethals, editors

A full-day workshop in conjunction with
the 16th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
in Washington, DC, USA, on 25 July 2010.

www.usefulpatterns.org

Proceedings of the
ACM SIGKDD Workshop on
Useful Patterns

‘10UP

Proceedings of the
ACM SIGKDD Workshop on
Useful Patterns

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

These proceedings are also included in the ACM Digital Library.

UP’10, July 25, 2010, Washington, DC, USA

Copyright © 2010, ACM 978-1-4503-0216-6/10/07.

2

ACM SIGKDD Workshop on
Useful Patterns

General Chairs

Bart Goethals & Nikolaj Tatti & Jilles Vreeken (Universiteit Antwerpen)

Program Committee

Michael Berthold (Universität Konstanz)
Björn Bringmann (Katholieke Universiteit Leuven)
Johannes Fürnkranz (Technische Universität Darmstadt)
Vivekanand Gopalkrishnan (Nanyang Technological University)
Ruoming Jin (Kent State University)
Eamonn Keogh (University of California – Riverside)
Arno Knobbe (Universiteit Leiden)
Arne Koopman (Universiteit Leiden)
Carson K. Leung (University of Manitoba)
Srinivasan Parthasarathy (Ohio State University)
Jian Pei (Simon Fraser University)
Kai Puolamäki (Aalto University)
Geoff Webb (Monash University)

External Reviewer

Ardian Kristanto Poernomo

3

Preface

Pattern mining is an important aspect of data mining, concerned with finding local structure in
data. Traditionally, the focus of research in pattern mining has been on completeness and efficiency.
That is, trying to find all potentially interesting patterns as fast as possible. This focus, important as
it is, has led our attention away from the most important aspect of the exercise: leading to useful
results. Let’s consider the following example.

Say a domain expert wants to extract novel knowledge from some data, and specifically
wants to know what patterns are present in the data. To do so, the expert involves a data
analyst. The analyst is provided with the data, and runs his favorite pattern mining
algorithm. Due to the pattern explosion, the number of discovered patterns the analyst
will find will be enormous; the result of the mining exercise often being much larger than
the original data. Nevertheless, let us assume our expert patiently considers the result.
Although he might stumble upon some interesting patterns, he will mostly encounter
very many patterns that convey roughly the same information. Perhaps worse, however,
is that he will find that many of the patterns represent information that is already known.

All things considered, even when convinced of the potential, in the above case the expert would not
be very impressed by the usefulness of pattern mining. Unlike in other fields of data mining, such as
clustering, in pattern mining presentation and visualization has not been a priority. However, even
when we forget about presentation to a user, patterns are not yet as useful as they could be. While
they provide highly detailed descriptions of phenomena in data, it remains difficult to make good
use of them in, say, e.g., classification or clustering. While this is mostly due to the huge number of
discovered patterns, making the result unwieldy at best, it does pose interesting research questions
like 'how to select patterns such that they are useful?'. Techniques that summarize the result exist,
but focus primarily on being able to reconstruct the full set, instead of targeting the usability of the
summarized set. As such, research into techniques that mine small sets of high-quality patterns is
required, where high-quality is directly related their intended use.

It is exactly this research, experiences and practices that we want to discuss with UP. The main
program of UP’10 consists of eight papers covering various aspects of useful pattern mining. We
sincerely thank the authors of the submissions and the attendees of the workshop. We wish to
thank the members of our program committee for their help in selecting a set of high-quality
papers. Furthermore, we are very grateful to Jiawei Han and Geoff Webb for giving keynote
presentations about their recent work on useful patterns.

Bart Goethals & Nikolaj Tatti & Jilles Vreeken
Antwerp, May 2010

4

Table of Contents

Invited Talks

Mining Useful Patterns: My Evolutionary View
Jiawei Han . 6

Association Discovery
Geoff Webb . 7

Research Papers

Patterns from Multiresolution 0-1 Data
Prem Raj Adhikari & Jaakko Hollmén . 8

CloseViz: Visualising Useful Patterns
Chris L. Carmichael & Carson K.-S. Leung . 17

A Framework for Mining Interesting Pattern Sets
Tijl De Bie & Kleantis-Nikolaos Kontonasios & Eirini Spyropoulou 27

Point-Distribution Algorithm for Mining Vector-Item Patterns
Anne Denton & Jianfei Wu & Dietmar Dorr . 36

Margin-Closed Frequent Sequential Pattern Mining
Dmitriy Fradkin & Fabian Moerchen . 45

Block Interaction: A Generative Summarization Scheme for Frequent Patterns
Ruoming Jin & Yang Xiang & Hui Hong & Kun Huang . 55

Authorship Classification: A Syntatic Tree Mining Approach
Sangkyum Kim & Hyungsul Kim & Tim Weninger & Jiawei Han 65

Pattern Selection Problems in Multivariate Time-Series using Equation Discovery
Arne Koopman & Arno Knobbe & Marvin Meeng . 74

5

Invited Talk

Mining Useful Patterns:
My Evolutionary View

Jiawei Han

Department of Computer Science
University of Illinois at Urbana-Champaign

hanj@cs.uiuc.edu

Abstract
Pattern mining has been studied in the data mining community for over 15 years, with lots of
interesting results and methods reported. One critical issue in pattern mining is the usefulness of
patterns, i.e., what patterns are likely useful for what applications, instead of yet another efficient
pattern mining algorithm. In my talk, I will discuss my evolutionary view on the usefulness of
patterns and present a set of examples on what patterns are considered to be useful in certain
practice. This may give some insight on pattern analysis, based on my own study, and point out a
few open research problems and possible exploration of broad applications of pattern mining.

Bio
Jiawei Han, Professor of Computer Science, University of Illinois at Urbana-Champaign. He has
been researching into data mining, information network analysis, database systems, and data
warehousing, with over 450 journal and conference publications. He has chaired or served on
many program committees of international conferences, such as PC co-chair for KDD, SDM, and
ICDM conferences.
He is currently the founding Editor-In-Chief of ACM Transactions on Knowledge Discovery from
Data and as the Director of Information Network Academic Research Center supported by U.S.
Army Research Lab. He is a Fellow of ACM and IEEE, and received 2004 ACM SIGKDD Innovations
Award, 2005 IEEE Computer Society Technical Achievement Award, and 2009 IEEE Computer
Society Wallace McDowell Award. His book “Data Mining: Concepts and Techniques” (2nd ed.,
Morgan Kaufmann, 2006) has been adopted as a textbook worldwide.

Copyright is held by the author.
UP’10, July 25, 2010, Washington, DC, USA.
ACM 978-1-4503-0216-6/10/07.

6

Invited Talk

Association Discovery

Geoffrey I. Webb
Faculty of Information Technology

Monash University, Australia
Geoff.Webb@monash.edu

Abstract
Association discovery is one of the most studied tasks in the field of data mining. However, far
more attention has been paid to how to discover associations than to what associations should be
discovered. In this talk Geoff will provide a highly subjective tour of the field. He will highlight
shortcomings of the dominant frequent pattern paradigm and illustrate benefits of the alternative
top-k approach. He will argue for the value of statistical filtering of associations and discuss some
null-hypotheses of widespread application. He will compare the merits of randomization, holdout
and within-search approaches to statistical filtering. He will also argue that in many applications it
is preferable to find interesting itemsets rather than interesting rules.

Bio
Geoff Webb, Professor of Computer Science, Director of the Centre for Research in Intelligent
Systems, Monash University. His primary research areas are machine learning, data mining and
user modeling, with over 150 journal and conference publications. He is the author of the
commercial data mining package Magnum Opus, a system that embodies many of his research
contributions in data mining. Many of his learning algorithms are included in the widely-used
Weka machine learning workbench.
He is currently Editor-In-Chief of the Springer journal Data Mining and Knowledge Discovery, co-
editor of the Springer Encyclopedia of Machine Learning, member of the editorial boards of ACM
Transactions on Knowledge Discovery from Data and Machine Learning, and member of the
editorial advisory board of Statistical Analysis and Data Mining.

Copyright is held by the author.
UP’10, July 25, 2010, Washington, DC, USA.
ACM 978-1-4503-0216-6/10/07.

7

Patterns from multiresolution 0-1 data

Prem Raj Adhikari and Jaakko Hollmén
Aalto University School of Science and Technology
Department of Information and Computer Science

PO Box 15400, FI-00076 Aalto
prem.adhikari@tkk.fi and jaakko.hollmen@tkk.fi

ABSTRACT
Biological systems are complex systems and often the bi-
ological data is available in different resolutions. Compu-
tational algorithms are often designed to work with only
specific resolution of data. Hence, upsampling or downsam-
pling is necessary before the data can be fed to the algo-
rithm. Moreover, high-resolution data incorporates signifi-
cant amount of noise thus producing explosion of redundant
patterns such as maximal frequent itemset, closed frequent
itemset and non-derivable itemset in the data which can be
solved by downsampling the data if the information loss is
insignificant during sampling. Furthermore, comparing the
results of an algorithm on data in different resolution can
produce interesting results which aids in determining suit-
able resolution of data. In addition, experiments in different
resolutions can be helpful in determining the appropriate
resolution for computational methods. In this paper, three
methods of downsampling are proposed, implemented and
experiments are performed on different resolutions and the
suitability of the proposed methods are validated and the
results compared. Mixture models are trained on the data
and the results are analyzed and it was seen that the pro-
posed methods produce plausible results showing that the
significant patterns in the data are retained in lower reso-
lution. The proposed methods can be extensively used in
integration of databases.

Keywords
Binary data, multiple resolutions, Upsampling, Downsam-
pling, Mixture Models

1. INTRODUCTION
This paper proposes and studies three different downsam-

pling methods for genome-wide chromosome bands in ampli-
fication data. Sample in this context is a process of defining
the level of precision for staining the chromosome bands.
For example, chromosome-1 can be defined by 23, 28, 42,
61 and 63 bands in resolution 300, 400, 550, 700 and 850

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

respectively as defined by International System on Cytogen-
tic Nomenclature(ISCN)[1]. The proposed methods can also
be used in downsampling of similar data where the data is
encoded in different chromosome bands for each sample. Bi-
ological systems are very complex systems. Since these com-
plexities are directly related to the health of humans, differ-
ent technologies have been developed to study them. Micro-
array technology, such as CGH (Comparative genomic hy-
bridization)[2] and aCGH (Array comparative genomic hy-
bridization) [3] have given the facilities to study the genomes
and the genes in human body. Thus, biological data are
available in different resolutions. However, computational
algorithms can often handle only specific resolution of the
data. So, data needs to be upsampled and downsampled to
different resolutions before some algorithms are applied on
them. Furthermore, comparing the results of the models in
different resolutions can reveal some interesting facts useful
for cancer research. If data in lower resolution produces re-
sults comparable to data in higher resolution, the time, com-
putational and hardware costs required to obtain the data in
higher resolution can be saved. Here, a dataset in resolution
850 was downsampled in four different resolutions 300, 393,
550, and 700 and experiments were performed on the data in
different resolutions. In addition, a different dataset in res-
olution 393 was upsampled to resolution 550, 700 and 850
and downsampled to resolution 300. Other popular dimen-
sionality reduction methods[4] does not produce desirable
results because representation of the data is lost. In this
context, we present methods of upsampling and downsam-
pling of data and experimental results in integrating two
biological databases originally in different resolutions.

The major aim of the paper is to sample the data in
different resolutions such that the significant patterns i.e.
frequent itemsets are retained in the sampled data. Thus,
we experiment our proposed methods with a set of pattern
mining algorithms. Given a binary data, D with a set of at-
tributes I1, I2 . . . In and a support σ, frequent set is the set
F of items of D such that at least a fraction of σ of the rows
of D have 1 in all columns of F [5, 6]. However, the major
problem with frequent itemset is that if an itemset {a, b, c}
is frequent then their subsets are also frequent because of
the anti-monotonicity property of frequent itemsets[7] thus
making it unsuitable for comparison and reporting. On the
other hand, maximal frequent itemset can be defined as an
itemset which is frequent but non of its supersets are fre-
quent [8]. Hence, we experiment our sampling methods with
maximal frequent itemset.

8

The rest of the paper is organized as follows. Section 2
briefly surveys the literature and Section 3 gives some brief
information about the dataset used in these experiments.
Section 4 and 5 discuss the methods used in upsampling and
three methods used in downsampling. Section 6 summarizes
the details of model selection procedure in the context of
mixture models. Section 7 explains the implementation of
the proposed methods, discusses the experiments performed
on different methods, and also compares results of the ex-
periments on different methods. In Section 8, conclusion is
drawn from the experiments. Finally, Section 9 gives the
future directions for research and issues not covered in this
paper.

2. RELATED WORK
DNA copy number analysis was started in [9] where the

authors mainly focused on determining the copy number
of the cytogenetic band. Similar works performed were re-
viewed in [10] to determine the copy number. However, in
[9] and [10], the authors did not establish a relation between
the copy number and their clinical significance. In the recent
past, DNA copy number amplification data collected with
bibliomics survey from 838 journal articles published from
1992 to 2002 was analyzed in [11]. In the work, amplification
patterns were determined for 73 different neoplasms and the
neoplasms were clustered according to amplification profiles
thus identifying the amplification hotspots using indepen-
dent component analysis(ICA). The profiling revealed that
human neoplasms formed clustered based on the amplifica-
tion frequency. Continuing the studies in DNA copy num-
ber amplification, authors in [12] classified the human can-
cers based on copy number amplification using probabilistic
modelling. Furthermore, the authors extracted the ranges
of amplification in the chromosome and expressed it accord-
ing to the cytogenetic nomenclature. In [13] and [14], the
authors modeled the DNA copy number amplification using
a mixture of multivariate Bernoulli Distribution. The clas-
sification of 73 different neoplasms in [11] were extended to
95 different neoplasm types. In [14] authors have proposed
a compact and understadable reprsentation of the multi-
variate Bernoulli mixture model. Furthermore, in [15], the
authors have proposed the enhancement to Bayesian Piece-
wise Constant Regression(BPCR) called mBPCR changing
the segment number estimator and boundary estimator to
enhance the fitting procedure. The proposed mBPCR was
more accurate in the determination of true breakpoints of
amplification. The more recent studies [16] and [17] have
mainly focused in cancer specific analysis of DNA copy num-
ber. Although the mixture models were used in [13] and [14],
they have studied only chromosome-1 data in resolution 393.
Chromosome-1 being the largest chromosome, there are sig-
nificant amount of amplifications [11]. However, a single
chromosome band and the specific gene responsible for can-
cer has not been identified. Hence, study was performed on
all chromosomes including chromosome-1. Chromosomewise
analysis can reveal interesting facts about amplification of
specific chromosomes and guarantees efficient computation
& ease of analysis. Furthermore, there are several sources of
multilevel biological data that comes in multiple resolutions
but there seems to be a significant gap in research to deal
with multiple resolution of the data. Algorithms and meth-
ods to deal with such multi-resolution data could possess
very high clinical significance.

3. DATASET
The dataset provided was a binary (0-1) dataset about

DNA amplifications specifying amplification of certain band
of chromosome. DNA copy number amplifications are mu-
tations in the DNA structure. The data was collected by
bibliomics survey of 838 journal articles during 1992-2002 by
hand without using state-of-the-art text mining techniques
[12, 14]. The dataset contained the information about the
amplification patterns of 4590 cancer patients. Each row de-
scribes one sample of cancer patient while each column iden-
tifies one chromosomal band(region). The amplified chro-
mosomal regions were marked with 1 while and the value 0
defines that the chromosome band is not amplified. Chro-
mosomes X and Y were not included in the experiments
because of the lack of data. Patients whose chromosomal
band had not shown any amplification for specific chromo-
some were not included in the experiments Thus different
chromosomes had different number of samples.

2 4 6 8 10 12

Figure 1: DNA copy number amplifications in

chromosome-17, resolution 393. χ = (Xij), Xij ∈
{0, 1} . Each row represents one sample of the ampli-
fication pattern for a patient and each column rep-
resents one of the chromosome bands.

The data for chromosome-17 in resolution 393 demon-
strated in the Figure 1, the copy number amplifications oc-
cur very sparsely and are often skewed. The original data
was in the resolution 400 i.e. there were 393 chromosomal
bands(regions) for the entire genome. The original data was
upsampled to resolution 550, 700 and 850 and downsampled
to resolution 300 using the methods discussed in Section 5.
Bands for specific chromosome were extracted and mixture
modelling was preformed on each chromosome. For exam-
ple: chromosome-1 had 63, 61, 42, 28, and 23 chromosomal
bands in resolution 850, 700, 550, 400, and 300 respectively
[1]. Similarly, a different set of data was available in reso-
lution 850. The data in resolution 850 was different than
that in the resolution 400. Similar to the data in the reso-
lution 400, the data in resolution 850 was downsampled to
resolution 300, 400, 550 and 700. Element-wise AND opera-
tion over all the samples in the data results in a zero vector
which necessitates sophisticated machine learning and data
mining methods and techniques for classifying and profiling
amplification.

9

4. UPSAMPLING
Upsampling is the process of changing the representation

of data to the higher or finer resolution. A simple method
was devised to upsample the data from resolution 393 and
three different methods were used to downsample the data
from higher resolution. Upsampling was simple and were im-
plemented using simple transformation tables. Initially, the
dataset was in resolution 393 and it was upsampled to three
different resolutions 550, 700 and 850. A simple method was
used to upsample the data. Multiple copies of cytogenetic
band in lower resolution were made to upsample the data
to higher resolution. For example, cytogenetic band 1q36.1
in resolution 550 has been divided into three bands 1q36.11,
1q36.12 and 1q36.13 in resolution 850. So, multiple copies of
1q36.1 was made for all bands 1q36.11, 1q36.12 and 1q36.13
in resolution. Figure 2 depicts the process of upsampling.

Figure 2: Schematic representation of upsampling

where duplicate copies of similar cytogenetic bands

are made in the higher resolution.

Figure 2 shows that three copies of similar cytogenetic
band in lower resolution band are made to upsample the
data to higher resolution. When multiple copies of same
cytogenetic band is made higher resolution will have only
few unique rows. Hence, when the sample size decreases
the complex model in higher dimension can not be trained
to convergence thus producing poor results. Implementation
of downsampling was performed using simple transformation
tables implemented in Perl[18]. Table 1 shows an example
of table for transformation of data in 393 resolution to 850
resolution for chromosome 17.

Table 1 shows that some chromosome bands missing in
393 resolution are seen in resolution 850. Hence, duplicate
copies of the similar chromosome band in resolution 393
were made in higher resolution. Duplications were based
on the assumption that if an adjacent area is amplified then
the probability of the chromosome band being amplified is
high because amplifications typically cover large areas. The
transformation table were chromosome specific and resolu-
tion specific (i.e. 88 transformation table in all for different
chromosomes)

5. DOWNSAMPLING
Downsampling is the process of changing the represen-

tation of the data to the lower or coarser resolution. In
both cases of upsampling and downsampling no attempt is
made to infer the structure of the data and no informa-
tion is added or removed during the process. If the data
of the same patients were available in two different resolu-
tions, one of the supervised classification algorithm machine
learning could be used in downsampling. However, such
data was not available and hence simple but useful methods
are used for downsampling. Downsampling methods were
implemented in scripts with a script for each chromosome in

Resolution 393 Resolution 850
17p13 17p13.3
... 17p13.2
... 17p13.1
17p12 17p12
17p11.2 17p11.2
17p11.1 17p11.1
17q11.1 17q11.1
17q11.2 17q11.2
17q12 17q12
17q21 17q21.1
... 17q21.2
... 17q21.31
... 17q21.32
... 17q21.33
17q22 17q22
17q23 17q23.1
... 17q23.2
... 17q23.3
17q24 17q24.1
... 17q24.2
... 17q24.3
17q25 17q25.1
... 17q25.2
... 17q25.3

Table 1: Chromosome bands for resolution 393 &
850 and their transformation.

each resolution. Section 5.1, 5.2 and 5.3 detail the methods
of downsampling. Interestingly, in some cases there were
some cytogenetic bands which were not available in higher
resolution. For instance, the q arm of chromosome-4 in res-
olution 850 is divided into 4q35.1 and 4q35.2. In contrast,
in resolution 700, the q arm of chromosome -4 is divided
into three bands: 4q35.1, 4q35.2 and 4q35.3. respectively.
In such cases, missing band in lower resolution was assigned
the amplification pattern of its nearest neighbor in all three
methods. For the example case above, the cytogenetic band
4q35.3 was assigned the amplification pattern of 4q35.2.

5.1 OR-function Downsampling

17p13
1

17p13.3
1

17p13.3
1

17p13.2
1

17p13.2
1

17p13.1
1

17p13.1
0

17p13.3
1

17p13.2
0

17p13.1
1

17p13.3
1

17p13.3
0

17p13.2
0

17p13.2
1

17p13.1
0

17p13.1
1

17p13.3
0

17p13.3
0

17p13.2
1

17p13.2
0

17p13.1
0

17p13.1
1

17p13.3
0

17p13.2
0

17p13.1
0

17p13
0

Figure 3: Schematic representation of OR-function
downsampling procedure. Here the cytogenetic
band in lower resolution is amplified if any of the
bands in higher resolution is amplified. Cytogenetic
band in lower resolution is not amplified only when
none of the bands in higher resolution is amplified.

10

In OR-function downsampling method, the cytogenetic
band in lower resolution is not amplified if none of the bands
in higher resolution are amplified. The cytogenetic band
in lower resolution is amplified if either of the bands in
higher resolution is amplified. Figure 3 depicts the OR-
function downsampling method. The OR-function down-
sampling method is based on simple belief that if the one of
the bands in higher resolution is amplified, it signifies the
presence of amplification in the band. For the case in the
Figure 3 downsampling can be considered as a simple bi-
nary classification problem in machine learning where input
is three dimensional binary variable and output is one di-
mensional binary variable. The solution is a simple truth
table describing the classical OR operation.

5.2 Majority decision Downsampling
In majority decision downsampling method, a cytogenetic

band in lower resolution is amplified if majority of the cy-
togenetic bands in higher resolution are amplified otherwise
the cytogenetic band is not amplified. In case of a tie am-
plification of two nearest bands one in the left and other
one in the right are taken into consideration iteratively and
the amplification pattern of the band is determined using
idea similar to ‘golden goal’1 strategy used in football. In
other words, if in any iteration both bands in neighborhood
bands are amplified than the band is amplified and if both
the neighbors are unamplified than the band is deemed un-
amplified. If the amplification of lower resolution can not
be concluded with ‘golden goal’ strategy then the band in
lower resolution is deemed as amplified. Figure 4 shows one
of the examples of majority decision in downsampling.

Figure 4: Schematic representation of majority deci-
sion downsampling procedure. Here the cytogenetic
band in lower resolution is amplified if majority of
the bands in higher resolution are amplified, other-
wise it not amplified.

There is a shortcoming in this downsampling procedure
because the majority decision downsampling procedure does
not take into account the the lengths of the cytogenetic
bands. The lengths of cytogentenic bands are considered by
length weighted downsampling method discussed in Section
5.3.

5.3 Length weighted Downsampling
As shown in the Figure 5, length weighted downsampling

method considers the length of the cytogenetic band. The

1The golden goal is a method used in football to determine
the winner which end in a draw after the end of regulation
time. Golden goal rules allow the team that scores the first
goal during extra time to be declared the winner. The game
finishes when a golden goal is scored.

Figure 5: Schematic representation of weighted av-
erage downsampling procedure. Here the cytoge-
netic band in lower resolution is amplified if total
length of the amplified bands in higher resolution is
greater than the total length of unamplified bands,
otherwise it not amplified. The figure is an exam-
ple case in chromosome 1q36.1 where two cytoge-
netic bands 1q36.11 and 1q36.12 in resolution 850
are amplified and one band 1q36.13 is not ampli-
fied. However, total length of unamplified region
i.e. band 1q36.13 (345) is greater than total length
of the unamplified region i.e. bands 1q36.11 and
1q36.12 (100+115=225). Hence, the band in reso-
lution 550 is unamplified.

length of the cytogenetic band varies in each assembly and
hence relative lengths were considered. The amplification of
cytogenetic band in lower resolution is determined by the
weighted length of cytogenetic band in higher resolution.
Each cytogenetic band is weighted according to the relative
length of the cytogenetic band. If the total length of am-
plified region is greater than the total length of unamplified
region, the cytogenetic band in lower resolution is amplified,
otherwise the cytogenetic band is unamplified. Here, rela-
tive length is considered which gives more accurate measure
of the amplification profiles in the cytogenetic band. Ab-
solute lengths of the cytogenetic bands are not currently
available and vary with each assembly. Two relative mea-
sures were considered in the calculation of the length. From
the ideogram dataset available in NCBI [19], the difference
between ISCN.top and ISCN.bot were used as relative mea-
sures. Similarly, difference between bases-top and bases-bot
were also used as the relative measure of the length of each
cytogenetic band. The difference in the results produced us-
ing the different relative measure of length have also been
studied.

6. MODEL SELECTION
Cancer is not a single disease but a collection of diseases.

Furthermore, cancer is a multi-factorial2 disease. Therefore,
finite mixture models [20, 21, 22] was selected to model the
amplification data because they provide efficient method to

2Here multi-factorial is used to mean there are many factors
causing cancer. Majority of the noninfectious diseases are
multi-factorial.

11

model the heterogeneous population. Furthermore, since the
copy number amplification data was a high dimensional bi-
nary data, the distribution used in the mixture model is
Bernoulli distribution. Assuming that the data comes from
a mixture of known number of components, J , finite mixture
of multivariate Bernoulli distributions is defined as:

p(D|Θ) =

JX
j=1

πj

dY
i=1

θ
xi

ji (1 − θji)
1−xi (1)

where πj are the mixture proportions satisfying the prop-
erties such as convex combination such that πj ≥ 0 and
JX

j=1

πj = 1 for all j = 1, . . . J . Θ is composed of θ1, θ2, θ3

. . . θd for each component distribution. Selection of number
of mixture components J directly influences the performance
of the mixture models. With fewer number of components,
the mixture model behaves similar to a parametric model
and increases the bias. On the contrary, if the mixture
model has a large number of components then the model
can overfit the data thus producing unreasonable variation.
Hence, there is always a trade-off between the two. To op-
timize the trade-off and determine optimal number of com-
ponents in the mixture model, 10-fold cross-validation tech-
nique [23, 24] was used. Expectation Maximization (EM)
algorithm [25, 26] was used to train the mixture model us-
ing BernoulliMix programme package [27] freely available
in BernoulliMix homepage. The model selection approach
used in the paper is similar to [13, 14] except for the cross-
validation procedure.

7. EXPERIMENTS
The downsampling methods were implemented in scripts,

one each for each method, each chromosome and each res-
olution. Chromosomes X and Y were excluded from the
experiments because of the lack of data. Hence, there were
198 scripts in all for all transformations. Matlab R©[28] was
used for scripting. The individual scripts for downsampling
each chromosome takes a file name of the data set in higher
resolution as input checks for the abnormality in the data.
The data was then transformed band-wise to lower resolu-
tion combining the multiple bands in higher resolution ac-
cording to the three different methods proposed in Sections
5.1, 5.2 and 5.3. Furthermore, samples which contained no
amplifications were also removed from the data.

7.1 Comparison of Downsampling Methods
The downsampled data from 850 resolution was subjected

to various tests to determine the difference in the results of
the downsampling methods. Few criteria were implemented
to check the similarity of the results. Since we are work-
ing with data amplification patterns in cancer, the first dif-
ference measure used is the number of amplifications pro-
duced by the three downsampling methods. Total number
of differences in each chromosome band was computed and
compared between three different downsampling methods.
Figure 6 depicts that the results of the three different down-
sampling process did not show significant differences with
respect to the number of amplifications.

Scrutinizing the results further mean difference between
the number of differences produced in the number of ampli-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

1

2

3

4

5

6

7

8

9

10
x 104

Chromosomes in three different resolutions

Am
pli

fic
at

ion
s

Total number of amplifications

Weighted
OR−function
Majority Voting

Figure 6: Total number of amplifications produced
by the three different downsampling methods.

fications by the three methods in various chromosome bands
was computed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

100

200

300

400

500

600

700

800

900

Chromosomes in three different resolutions

Di
ffe

re
nc

e
in

Am
pli

fic
at

ion
s

Difference in number of amplifications

OR−function and Majority Voting
OR−function and Weighted
Majority Voting and Weighted

Figure 7: Difference in total number of amplifica-
tions produced by the three different downsampling
methods.

Figure 7 suggests that there are differences in the results
produced by the three downsampling methods with respect
to the downsampling methods. However, the difference be-
tween the methods are not significant when the number of
amplifications are considered. Similarly, other trivial differ-
ence measures such as row and column margins, and number
of unique rows were also studied and the results showed that
results of the downsampling methods are fairly similar.

However, these trivial measures used to calculate the dif-
ference are susceptible to some errors where the number of
amplifications are same and also the number of amplifica-
tions does not change in different rows. For example, these
methods does not show difference between the following two
datasets.

»
1 0
0 1

–
and

»
0 1
1 0

–

In order to capture these differences, we further analyzed
the difference between the two methods as the difference be-
tween the two resulting matrices for different methods using

12

standard matrix difference measures. The distance measure
used is the square of the Frobenius norm [29] between two
matrices. In binary matrices, Frobenius norm is essentially
the number of cells where the two matrices differ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

0.005

0.01

0.015

0.02

0.025

Chromosomes in three different resolutions

Sc
ale

d
Fr

ob
en

ius
 N

or
m

Comparision of Downsampling Methods

OR−function and Majority
Majority and Weighted
Weighted and OR−Function

Figure 8: Comparison of three different downsam-
pling methods : The difference measure used is
scaled Frobenius norm.

Figure 8 suggests that the three downsampling methods
produces fairly similar results. The Figure 8 also suggests
that the differences are high in chromosome-1 which is ex-
pected because chromosome-1 is the largest chromosome.
Differences are also high in lower resolution when compared
to higher resolution because it is the lower resolution where
the most changes takes place. The differences in the smaller
chromosomes especially 20-22 are because of significant vari-
ation in the bands combined. Normally, three bands in finer
resolution are combined in coarser resolution but in small
chromosomes, the number of chromosome bands combined
is very different thus making it difficult for weighted and OR-
function downsampling method to work. It is to be noted
that in the chromosomes where the differences are larger
have larger number of differences in number of chromosome
bands in different resolutions.

7.2 Model selection in Mixture Model
The size of the chromosome in terms of chromosome bands

varied significantly. Some chromosomes had higher number
of bands and some chromosomes had lower number of chro-
mosome bands. Data from different resolutions were indi-
vidually subjected to the mixture models. For model selec-
tion, for each mixture component, 50 models were trained
using training set. It is often recommended to repeat cross-
validation technique a number of times because 10-fold cross-
validation can be seen as a “standard” measure of the per-
formance whereas ten 10-fold cross-validations would be a
“precise” measure of performance [30]. Since EM-algorithm
is sensitive to the initializations and the results may differ
on the same data for different initializations and it can get
stuck in local minima and the global optimum results are not
often guaranteed [31], 50 different models were trained for
each number of components. In other words, 10-fold cross-
validation was repeated 50 times. The number of mixture
components was varied from 2 to 20 for all chromosomes
in all resolutions. Validation set for each model is the one
remaining subset of the data which is not used for train-

ing. Total likelihood for the training data as well as the
validation data is calculated and averaged for each mixture
component. The number of components for which the likeli-
hood is maximum is selected as the model for the data taking
parsimony into account. In other words, in some cases, mod-
els with lesser mixture components are selected instead of
models with large number of mixture components for which
likelihood was higher. Model selection was performed on all
chromosomes as chromosome-wise analysis can reveal inter-
esting facts about amplification of specific chromosomes and
guarantees efficient computation & ease of analysis. Here,
results are explained only for chromosome-17 as an exam-
ple. Two sets of original data were available in resolution
393 and 850. Experiments were performed in the original
resolution and sampling was performed to sample the data
to different resolutions. Experiments showed that number
of components required to optimally fit the model is inde-
pendent of the resolution of the data thus showing that the
significant patterns are not lost during sampling. Figure 9
and 10 show a model selection procedure for the data in
resolution 393 and 850.

2 4 6 8 10 12 14 16 18 20
−6

−5.5

−5

−4.5

−4

−3.5

−3

Number of Components

Lo
g

lik
el

ih
oo

d

Training and Validation Likelihood: Chromosome−17 and Resolution−393

Training Set
Validation Set
Training IQR
Validation IQR

Figure 9: Model selection for the the original
data in resolution 393. The averaged log-likelihood
for training and validation sets in a 10-fold cross-
validation setting for different number of compo-
nents in chromosome-17: Resolution-393. The in-
terquartile range(IQR) for 50 different training and
validation runs have also been plotted.

Figure 9 shows the model selection in case of resolution
393 which downsampled from resolution 850. Figure 9 shows
that the likelihood is smoothly increasing function with re-
spect to the number of components. From Figure 9, it can be
seen that validation likelihood is maximum when the num-
ber of components is 14, but instead of 14 components, 6
components was selected. It is to be noted that sometimes
complex models overfit the data. Simple model also reduces
the time and space complexity. Furthermore, the training
and validation likelihood when the number of components
is 6 are -3.3593 and -3.6883. In addition, when the number
of components is 14, the training and validation likelihood
are -3.0887 and -3.4146. Hence the difference in likelihood
is negligible when compared with the efficiency in terms of
time and space complexity. Furthermore, when the number
of components are increased, IQR shows significant varia-

13

tion. The variation in IQR is because when the number of
components are increased, samples can be assigned to dif-
ferent clusters. Additionally, the data in resolution in 393
was upsampled to resolution 850 and similar approach for
model selection was followed.

2 4 6 8 10 12 14 16 18 20
−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Number of Components

Lo
g

lik
el

ih
oo

d

Training and Validation Likelihood: Chromosome−17 and Resolution−850

Training Set
Validation Set
Training IQR
Validation IQR

Figure 10: The averaged log-likelihood for train-
ing and validation sets in a 10-fold Cross valida-
tion setting for different number of components in
chromosome17: Resolution 850. The interquartile
range(IQR) for 10 different training and validation
runs have also been plotted.

Figure 10 also shows that the IQR varies significantly
from the mean. The choice of the number of components is
straightforward because Figure 10 clearly shows a maximum
of validation likelihood when the number of components is
8. Even when the number of components is 8, the variation
in IQR is high. The variation in IQR can be compensated
with sufficient training and would produce favorable results.
The results can be further improved when the size of the
dataset is increased.

The major aim of upsampling and downsampling was to
aid in the integration of databases. The clinical aspects re-
garding the classification of cancer with mixture models is
already established in [11] and [12]. Thus, data in different
resolution were combined after upsampling and downsam-
pling and model selection was performed. Table 2 summa-
rizes the results of the experiments on chromosome: 17. To
calculate the Likelihood 50 different models were trained to
convergence and likelihood of the data was calculated for
each model and the mean of the results are reported.

Data Resolution J Likelihood
Original in 393 8 -3.39
Original in 850 8 -4.75
Downsampled to 393 6 -3.41
Upsampled to 850 6 -5.23
Combined in 393 7 -3.36
Combined in 850 7 -5.11

Table 2: Results of experiments on chromosome-
17. J denotes the selected number of component
distributions.

Table 2 shows the number of components required to fit
the data differs in different resolution and different number

of samples in the data. The likelihood of data in higher res-
olution is lower than the likelihood of the data in the lower
resolution when the number of components are same. This
phenomenon can be attributed to the curse of dimensionality
[32]. For example, the dimensionality of data in resolution
393 and 850 differs by 12 in chromosome-17 but likelihood
is lesser even when the number of components is similar.
For the original data in resolution 393 and 850, the differ-
ence in number of parameters of the model is 6 ∗ (1 + 26) −
6 ∗ (1 + 18) = 48 which invites significant amount of com-
putational complexity. The increased complexity however
does not produce corresponding the increase in the likeli-
hood. With increasing samples, the number of components
are not increased because the complexity of mixture models
depends on the complexity of the problem being solved, not
with the size of dataset. This experiments with the mixture
models also shows that patterns present in the higher reso-
lution of the data is efficiently and effectively preserved in
lower resolution.

Data Resolution # X Train Test
Original in 393 342 0.25 0.06
Original in 850 2716 0.43 0.30
Downsampled to 393 2716 1.12 0.20
Upsampled to 850 342 2.16 0.08
Combined in 393 3058 1.43 0.19
Combined in 850 3058 2.51 0.32

Table 3: Computational complexity for training and
testing of a single mixture model with appropri-
ate number of mixture components as decided in
2. Experiments are performed on chromosome-17
and time is calculated in seconds. X denotes the
number of data samples. The hardware used is Intel
Core2Duo 2.00GHz CPU with a memory of 3 GB.

The major drawback in using mixture models is compu-
tational complexity of training the mixture models. Nor-
mally, training mixture models are computationally expen-
sive when compared to other parametric (such as Poisson
distribution) as well as non-parametric (such as k-means)
methods. Similar to other machine learning methods com-
putational complexity of the mixture model also increases
with increasing dimension i.e. resolution in our case. Thus,
computational complexity was also estimated for each reso-
lution for the number of components shown in Table 2. As
shown in the Table 3 the computational complexity increases
with increasing resolution. To estimate the training time, 50
different models are trained until 10 iterations and the mean
of the result is taken as final training time. Similarly, likeli-
hood is calculated for 50 different models trained to calculate
the training time and the mean of the results is reported. Ex-
periments with resolution 850 required approximately twice
the time required for the resolution 393. Furthermore, from
Table 2, we also know that number of components required
is high when the resolution is increased but the likelihood
decreases. In addition, the curves are smoother in Figure 9
when compared to Figure 10. This phenomenon is because
of the intrinsic problems of working with high dimensional
data arising in higher resolution. These results suggest that
data in lower resolution is preferred but lower resolution does
not capture all the available biological information. Thus,
there is a trade-off between the two.

14

7.3 Frequent itemsets
The measure of frequent itemsets provides a metric for the

similarity measure between the sampled data and original
data. Furthermore, our major aim was to upsample and
downsample the data so that the patterns in the original
resolution were retained. Mining maximal frequent itemset
in the context of mixture modelling of multivariate Bernoulli
distribution is two fold. It has by shown in [14] that maximal
frequent itemset can be used to describe the finite mixture
of multivariate Bernoulli distributions compactly and in a
language understandable by the domain experts. In [14], the
authors implemented a mixture of Bernoulli distributions in
clustering binary data to derive frequent itemsets from the
cluster-specific data sets and found that the cluster-specific
maximal frequent itemset were significantly different from
those itemsets extracted globally.

Similar to [14], we used MAFIA (MAximal Frequent Item-
set Algorithm) [8] to mine the frequent patterns because
other similar algorithms such as Apriori [6] would produce
long results which will be difficult to interpret. The fre-
quency or the threshold was choosen as 0.5 motivated by
a majority voting protocol. Upscaling is simple and is al-
ways guaranteed to retain the frequent itemset although the
number of frequent itemset increases with the exact same
support. Therefore, they have not been reported.

Data Maximal frequent itemsets
Og. 393 {11},{12}
Og. 850 {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24}
OR. 393 {5, 6, 7, 8, 9, 10, 11, 12}
We. 393 {7,8}, {5, 6, 7}, {7,12}, {7,11}, {8, 9, 10,

11, 12}
Mj. 393 {5, 6, 7, 8, 9, 10, 11, 12 }
Co. 393 {5, 6, 7}, {6,7,8}, {7, 8, 9, 10, 11}, {7, 8,

11, 12}, {8, 9, 10, 11, 12}
Co. 850 {7, 8, 9}, {8, 9, 10, 11, 12, 13, 14}, {9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21},
{9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24
}, { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24}

Table 4: Maximal frequent itemsets for data in
different resolutions. The threshold used is 0.5.
Og., OR., We., Mj. and Co. denotes the orig-
inal, OR-function down-sampled, weighted down-
sampled, majority voting downsampled and com-
bined data respectively.

From Table 4, we can see that the maximal frequent item-
sets are preserved during sampling of resolutions. For exam-
ple, in OR-function downsampled data in resolution 393 and
original data in resolution 850, there is no difference in the
maximal frequent itemset because from upsampling Table 1
we know that items 7,8, and 9 in 850 represents items 5, 6
and 7. Items 8 to 14 in 850 are combined to form item 8 in
the data. Other itemsets are also formed with similar com-
binations. Weighted downsampling differs more than other
two types of methods but the difference is not significant.
The results of sampling can be seen more profoundly in in-
tegrated datasets where each itemsets in higher resoulution
can be defined by the frequent itemsets lower resolution.
The differences in some cases are only seen because support

for those itemsets are less; these differences can be expected
because data in lower resolution can not encompass all the
information in higher resolution.

8. SUMMARY AND CONCLUSIONS
A simple upsampling and three different downsampling

methods were proposed and their results were studied. The
results were plausible and fairly consistent. The resulting
data in different resolutions efficiently captures the informa-
tion of data in different resolutions. Mixture models were
then applied to the data in different resolutions. Finally,
data in two different resolutions were integrated and then
analyzed in one resolution. The results suggested that num-
ber of components required to fit the data does not differ
across resolutions but likelihood of the model on higher res-
olution is poor than on lower resolution although the data is
the same but representation is different. The clustering re-
sults of mixture models possesses high clinical significance.
Furthermore, the maximal frequent itemsets and mixture
modelling show that significant patterns in the data is main-
tained during sampling.

9. FUTURE WORK
Mixture models are limited because they work with one

resolution of data. In the future work, they can be ex-
tended to work with multiple resolutions of the data where
the sampling is incorporated with in models. The sampling
techniques can be constrained to maintain the significant
patterns in the dataset.

10. REFERENCES
[1] L.G. Shaffer and N. Tommerup. ISCN 2005: An

International System for Human Cytogenetic
Nomenclature(2005) Recommendations of the
International Standing Committee on Human
Cytogenetic Nomenclature. Karger, 2005.

[2] A. Kallioniemi, O.P. Kallioniemi, D. Sudar,
D. Rutovitz, J.W. Gray, F. Waldman, and D. Pinkel.
Comparative genomic hybridization for molecular
cytogenetic analysis of solid tumors. SCIENCE,
258(5083):818–821, OCT 30 1992.

[3] D. Pinkel, R. Segraves, D. Sudar, S. Clark, I. Poole,
D. Kowbel, C. Collins, W.L. Kuo, C. Chen, Y. Zhai,
S. H. Dairkee, B.M. Ljung, J.W. Gray, and D.G.
Albertson. High resolution analysis of DNA copy
number variation using comparative genomic
hybridization to microarrays. Nature Genetics, 20: 207
– 211, 1998.

[4] I. K. Fodor. A survey of dimension reduction
techniques. Technical report, U.S. Department of
Energy, June 2002.

[5] R. Agrawal, T. Imieliński, and A. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD ’93: Proceedings of the 1993
ACM SIGMOD international conference on
Management of data, pages 207–216, New York, NY,
USA, 1993. ACM.

[6] H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient
algorithms for discovering association rules. In
Usama M. Fayyad and Ramasamy Uthurusamy,
editors, AAAI Workshop on Knowledge Discovery in

15

Databases (KDD-94), pages 181–192, Seattle,
Washington, 1994. AAAI Press.

[7] Arianna Gallo, Pauli Miettinen, and Heikki Mannila.
Finding subgroups having several descriptions:
Algorithms for redescription mining. In SDM, pages
334–345, 2008.

[8] Doug Burdick, Manuel Calimlim, and Johannes
Gehrke. Mafia: A maximal frequent itemset algorithm
for transactional databases. In In ICDE, pages
443–452, 2001.

[9] J.R. Pollack, C.M. Perou, A.A. Alizadeh, M.B. Eisen,
A. Pergamenschikov, C.F. Williams, S.S. Jeffrey,
D. Botstein, and P.O. Brown. Genome-wide analysis
of dna copy-number changes using cdna microarrays.
Nature Genetics, 23(1):41–46, 1999.

[10] S. Knuutila, Y. Aalto, K. Autio, A. Björkqvist,
W. El-Rifai, Hemmer S., T. Huhta, E. Kettunen,
S. Kiuru-Kuhlefelt, M.L. Larramendy, T Lushnikova,
O. Monni, H. Pere, J. Tapper, M. Tarkkanen,
A. Varis, V. Wasenius, M. Wolf, and Y. Zhu. Dna
copy number losses in human neoplasms. Gynecologic
Oncology, 155(2):683–694, 1999.

[11] S. Myllykangas, J. Himberg, T. Böhling, B. Nagy,
J. Hollmén, and S. Knuutila. DNA copy number
amplification profiling of human neoplasms. Oncogene,
25(55):7324–7332, 2006.

[12] S. Myllykangas, J. Tikka, T. Böhling, S. Knuutila, and
J. Hollmén. Classification of human cancers based on
DNA copy number amplification modeling. BMC
Medical Genomics, 1:15, 2008.

[13] J. Tikka, J. Hollmén, and S. Myllykangas. Mixture
modeling of DNA copy number amplification patterns
in cancer. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
4507 LNCS:972–979, 2007.

[14] J. Hollmén and J. Tikka. Compact and understandable
descriptions of mixtures of bernoulli distributions.
Lecture Notes in Computer Science including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics, 4723 LNCS:1–12, 2007.

[15] P.M.V. Rancoita, M. Hutter, F. Bertoni, and I. Kwee.
Bayesian DNA copy number analysis. BMC
Bioinformatics, 10, 2009.

[16] B. D’haene, J. Vandesompele, and J. Hellemans.
Accurate and objective copy number profiling using
real-time quantitative PCR. Methods, 50(4):262–270,
2010.

[17] E. Despierre, D. Lambrechts, P. Neven, F. Amant,
S. Lambrechts, and I. Vergote. The molecular genetic
basis of ovarian cancer and its roadmap towards a
better treatment. Gynecologic Oncology,
117(2):358–365, 2010.

[18] L. Wall. Perl: Practical Extraction and Report
Language. Website, 1987. http://www.perl.org/: Last
Accessed: 15 Mar 2010.

[19] National Center for Biotechnology Information.
Human genome project. Website, February 2010.
http://www.ncbi.nlm.nih.gov/projects/mapview/

Last Accessed: 5 Feb 2010.

[20] G. J. McLachlan and D. Peel. Finite mixture models,
volume 299 of Probability and Statistics – Applied

Probability and Statistics Section. Wiley, New York,
2000.

[21] B. S. Everitt and D. J. Hand. Finite mixture
distributions. Chapman and Hall, 1981.

[22] C. M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1st ed. 2006. corr. 2nd printing edition, October 2007.

[23] S. Geisser. A predictive approach to the random effect
model. Biometrika, 61(1):101–107, 1974.

[24] F. Monsteller and J. Tukey. Data analysis including
statistics. In Lindzey G. and Aronson E., editors,
Handbook of Social Psychology, Vol-2,
Addison-Wesley, 1968.

[25] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal Of The Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[26] J. H. Wolfe. Pattern clustering by multivariate
mixture analysis. Multivariate Behavioral Research,
5:329–350, 1970.

[27] J. Hollmén. BernoulliMix: Program package for finite
mixture models of multivariate Bernoulli distributions,
May 2009. Freely available in
http://www.cis.hut.fi/jHollmen/BernoulliMix/.

[28] Mathworks. Matlab: the language of technical
computing. Website, 1994.
http://www.mathworks.com/products/matlab/: Last
Accessed: 15 Mar 2010.

[29] G. W. Stewart. Matrix Algorithms: Volume 1, Basic
Decompositions. Society for Industrial Mathematics,
1998.

[30] S.D. Gay. Datamining in proteomics: extracting
knowledge from peptide mass fingerprinting spectra.
PhD thesis, University of Geneva, Geneva, 2002.

[31] G. J. Mclachlan and T. Krishnan. The EM Algorithm
and Extensions. Wiley-Interscience, 1 edition,
November 1996.

[32] W. Powell. Approximate Dynamic Programming:
Solving the Curses of Dimensionality. Wiley, 2007.

16

CloseViz: Visualizing Useful Patterns

Christopher L. Carmichael
Department of Computer Science

The University of Manitoba
Winnipeg, MB, Canada

umcarmi1@cs.umanitoba.ca

Carson Kai-Sang Leung
∗

Department of Computer Science
The University of Manitoba

Winnipeg, MB, Canada
kleung@cs.umanitoba.ca

ABSTRACT
Numerous algorithms have been proposed since the intro-
duction of the research problem of frequent pattern mining.
Such a research problem has played an essential role in many
knowledge discovery and data mining (KDD) tasks. Most
of the proposed frequent pattern mining algorithms return
the mined results in the form of textual lists that contain
frequent patterns showing those frequently occurring sets of
items. As “a picture is worth a thousand words”, the use
of visual representation can enhance the user understand-
ing of the inherent relations in a collection of frequent pat-
terns. Although a few visualizers have been developed to
visualize the raw data or the results for some data mining
tasks, most of these visualizers were not designed for visual-
izing frequent patterns. For those that were, they show all
the frequent patterns that can be mined from datasets. It
is not uncommon that, for many real-life applications, the
user may end up be overwhelmed by such a huge number
of patterns. In this paper, we propose a visualizer—called
CloseViz—to show the user only the useful patterns. Specif-
ically, CloseViz shows only closed frequent patterns. By do-
ing so, CloseViz reduces the number of displayed patterns
to a useful amount while retaining all the important fre-
quency information. Moreover, CloseViz presents the closed
frequent patterns to the user in a useful manner, which al-
lows visual exploration of the patterns. Note that the closed
patterns shown by CloseViz can be considered as surrogates
for all the frequent patterns that can be mined from the
datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining ; H.1.2 [Models and Principles]: User/Ma-
chine Systems—human factors ; H.5.2 [Information In-
terfaces and Presentation]: User Interfaces

∗Corresponding author: C.K.-S. Leung.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP'10, July 25, 2010, Washington, DC, USA.
Copyright c©2010 ACM 978-1-4503-0216-6/10/07 ...$10.00

General Terms
Algorithms; Design; Experimentation; Human factors; Man-
agement; Measurement; Performance; Reliability

Keywords
Knowledge discovery and data mining (KDD), useful pat-
terns, closed itemsets, frequent itemsets, reduction in the
number of returned patterns, removal of redundant patterns,
visual exploration of patterns

1. INTRODUCTION
Frequent pattern mining [1, 21] aims to discover implicit,
previously unknown, and potentially useful knowledge in
the form of frequent patterns (i.e., frequently occurring sets
of items, which are also known as frequent itemsets) from
datasets. Some examples of frequent patterns are sets of fre-
quently purchased merchandise items, combinations of pop-
ular courses taken by students, groups of frequently observed
features associated with edible mushrooms (or other kinds of
food), common patterns in gene expression, and collections
of web pages frequently visited by surfers. In many real-life
situations, the mined frequent patterns can answer crucial
questions that help users make important admininstrative
and/or business decisions. The following are some examples
of practical applications in real-life situations:

• Owners of an electronic store may want to find out
how frequently certain kinds of items (e.g., audio ca-
bles, batteries) are purchased individually and how
frequently they are purchased together? What kinds
of items are frequently purchased together with DVD
players (e.g., {audio cables, batteries, computers, DVD
players})? Answers to these questions help the owners
in item shelving and inventory.

• University administrators may want to know which
popular courses (e.g., {Astronomy 101, Biochemistry
101, Computer Science 101}) are frequently taken to-
gether by students? Knowing this information may
help the administrators in course scheduling.

In addition, frequent pattern mining often plays an essen-
tial role in various knowledge discovery and data mining
(KDD) tasks such as the mining of association rules, se-
quences, episodes, and constrained patterns. This explains
why, over the past two decades, numerous frequent pattern
mining algorithms [9, 19, 36, 37] have been proposed to help
answer real-life questions including the above two. Most of

17

these algorithms focus on how to compute the frequent pat-
terns as efficiently as possible. For instance, some of the
algorithms are Apriori-based [1], while some of them are
FP-tree based [11, 30]; some other algorithms enhance the
mining performance by using techniques like hashing and
segmentation [27]; and, some algorithms deal with incremen-
tal updating [26]. In general, most of the frequent pattern
mining algorithms return a collection of frequent patterns
in textual form (e.g., a very long unsorted list of frequent
patterns). Consequently, users may not easily comprehend
the discovered knowledge and useful information from this
lengthy list.

Presenting a collection of frequent patterns in graphical form
can show the relations embedded in the data and help users
understand the nature of the useful information and dis-
covered knowledge. Hence, researchers have also considered
visual analytics [17, 20, 34, 38, 40] and visualization tech-
niques [8, 13, 15] to assist users in gaining insight into mas-
sive amounts of data or information. Several visualization
systems [2, 16, 35] have been developed for visualizing data
(i.e., input of the KDD process). Other systems have also
been developed to visualize the mining results (i.e., output
of the KDD process) such as clusters [18], decision trees [3],
or association rules [5, 12]. However, not many systems were
designed to visual frequent patterns.

Recently, some visualizers have been designed for showing
frequent patterns. For example, Yang [39] developed a sys-
tem that can visualize frequent patterns. However, his sys-
tem was primarily designed to visualize association rules,
and it does not scale very well in assisting users to im-
mediately see certain useful information (such as exact fre-
quencies or support) of a huge number of frequent patterns.
Munzner et al. [28] presented a visualizer called Power-
SetViewer (PSV), which provides users with guaranteed vis-
ibility of frequent patterns in the sense that the pixel rep-
resenting a frequent pattern is guaranteed to be visible by
highlighting such a pixel. However, multiple frequent pat-
terns may be represented by the same pixel. We previously
proposed a visualization system—called FIsViz [24]—that
aims to visualize frequent patterns. FIsViz represents each
frequent pattern by a polyline in a two-dimensional space.
The location of the polyline indicates the exact frequency of
the pattern explicitly. As a result, FIsViz enables users to
visualize the mined results (i.e., frequent patterns) for many
practical real-life applications. However, in some other ap-
plications (especially, when the number of frequent patterns
is huge), FIsViz may not scale very well. Users may require
more effort to be able to clearly visualize frequent patterns.
The problem is caused by the use of polylines for represent-
ing frequent patterns. As the polylines can be bent and/or
can cross over each other, it can be difficult to distinguish
one polyline (representing a frequent pattern) from another.

To avoid the bending and crossing-over of polylines, we sub-
sequently proposed (i) another visualizer called WiFIsViz
[25] and (ii) a visualization module called FpViz [23] in a
visual analytic tool called FpVAT [22]. Both WiFIsViz and
FpViz represent each frequent pattern by a horizontal line
in a two-dimensional space. The location of the horizon-
tal line indicates the exact frequency of the pattern explic-
itly. Hence, they enable users to visualize the mined results.

However, in some real-life applications, the number of pat-
terns returned by frequent pattern mining algorithms can be
so huge that not all of the patterns can be clearly visualized
and displayed on a single screen.

In this paper, we investigate how to reduce the number
of patterns returned by frequent pattern mining algorithms
and/or displayed by frequent pattern visualizers? We also
investigate how to do so while retaining the important in-
formation (e.g., frequency or support value) of the patterns?
The key contribution of our work in this paper is the pro-
posal and development of a novel interactive and scalable
useful pattern visualizer, called CloseViz, which shows only
closed frequent patterns. Note that closed frequent patterns
are condensed and concise representation of all frequent pat-
terns. By showing only closed patterns, CloseViz greatly re-
duces the number of useful patterns to be shown or returned
to users. It also provides users with effective visual support
in the data analysis and KDD process for visual exploration
of the patterns. As CloseViz retains the frequency informa-
tion of patterns, the displayed closed patterns mined from a
dataset can be considered as surrogates for all the frequent
patterns that can be mined from the same dataset.

This paper is organized as follows. Next section briefly de-
scribes related work. In Section 3, we introduce our CloseViz
and describe its design. In Section 4, we present interactive
features of CloseViz, which allows users to visually explore
useful patterns. Section 5 shows evaluation results. Finally,
conclusions, as well as ongoing and future work, are pre-
sented in Section 6.

2. RELATED WORK
In the field of KDD, several effective systems have been de-
veloped for visualizing raw data. Examples include Spot-
fire [2], independence diagrams [4], VisDB [16], and Po-
laris [35]. Besides them, there are also systems that focus
on visualizing the results of KDD tasks other than frequent
pattern mining (e.g., clustering [18, 33], classification [3, 10],
and association rule mining [5, 6, 12]). In addition, there
were also systems that can be used for visualizing frequent
patterns [24, 25, 28, 39, 41]. We briefly discuss some of them
in the remainder of this section.

2.1 Yang's system
Yang [39] designed a system mainly to visualize association
rules—but can also be used to visualize frequent patterns—
in a two-dimensional space consisting of many vertical axes.
In his system, all domain items are sorted according to
their frequencies and are evenly distributed along each ver-
tical axis. A frequent pattern consisting of k items (i.e., a
k-itemset) is then represented by a curve that extends from
one vertical axis to another connecting k such axes. The
thickness of the curve indicates the frequency (or support)
of such a frequent pattern. However, such a representation
suffers from a few problems. First, the use of thickness only
shows relative (but not exact) frequencies of the patterns.
Comparing the thickness of curves is not easy. Second, since
items are sorted and evenly distributed along the axes, users
only know some items are more frequent than the others,
but cannot get a sense of how these items are related to
each other in terms of their exact frequencies (e.g., whether
item a is twice as frequent as, or just slightly more frequent

18

�

�60%

40%

20%
a

�

b c

�

d

�

e

����
�

�

Figure 1: FIsViz [24] shows {a, c, d}.

than, item b). As a preview, our proposed CloseViz provides
users with exact frequency information instead.

2.2 PowerSetViewer
Unlike Yang’s system, PowerSetViewer (PSV) [28] was de-
signed specifically to visualize frequent patterns in the con-
text of the powerset universe. With PSV, all patterns are
grouped together based on cardinality and are presented in
a two-dimensional grid. A different background colour is
assigned to each cardinality, and patterns of the same car-
dinality are mapped into consecutive grid squares. When
the number of patterns exceeds the number of allocated
grid squares, PSV maps several patterns into the same grid
square. A square is highlighted to indicate that it contains
at least one frequent pattern. This provides users with guar-
anteed visibility. However, PSV also suffers from a few prob-
lems. First, as a highlighted grid square may contain mul-
tiple frequent patterns, it is not easy to tell distinguish one
pattern from all that mapped into the same square. Sec-
ond, like Yang’s system, PSV also does not show the exact
frequency of a pattern.

2.3 FIsViz
Frequent itemset visualizer (FIsViz) [24] is one of the re-
cently developed visualizers that were designed to show fre-
quent patterns. It represents a frequent pattern consisting of
k items (i.e., k-itemset) by a polyline that connects k nodes
(where each node represents an item in the k-itemset) in
a two-dimensional space. The frequency of the i-th prefix
of a pattern X is indicated by the y-position of the i-th
node in the polyline representing X . For example, when
X = {a, c, d} as shown in Figure 1, the frequencies of its
prefixes {a} and {a, c} (i.e., 60% and 40%) are respectively
indicated by the y-positions of nodes a and c in the poly-
line. Similarly, the frequency of X = {a, c, d} (i.e., 20%) is
represented by the y-position of node d in that polyline.

With this representation, slopes of different sectors of a poly-
line can vary. In other words, the entire polyline may not
be a straight one (i.e., it may be bent). Moreover, polylines
representing different patterns may cross each other. This
may make it difficult for users to distinguish one sector of
a polyline from another. For example, is Figure 2 showing
(i) {a, c, d}&{b, c, e} or (ii) {a, c, e}&{b, c, d}? As a preview,
our proposed CloseViz avoids the crossing-over of polylines;
instead, it uses horizontal lines to represent frequent pat-
terns.

2.4 WiFIsViz and FpViz
WiFIsViz [25] and FpViz [23] are two other visualizers that
were designed for visualizing frequent patterns. The key
difference between the two is that the former uses two half-

�

�60%

40%

20%
a

�

b

�

c

�

d

�

e

�

��������

�
�

�
�

Figure 2: FIsViz [24] shows (i) {a, c, d} & {b, c, e}
or (ii) {a, c, e} & {b, c, d}.

screens to visualize the frequent patterns (a half-screen dis-
plays all the frequent patterns and the other half-screen
shows their frequencies) and the latter shows all the frequent
patterns and their frequencies on the same full-screen. Like
FIsViz, both WiFIsViz and FpViz show a pattern consist-
ing of k items (i.e., k-itemset) in a two-dimensional space.
Unlike FIsViz, they use an orthogonally laid out node-link
diagram instead of the polyline diagram. Specifically, they
represent the k-itemset by a horizontal line connecting k cir-
cles (where each circle represents an item in the k-itemset).
By doing so, they reduce the number of line crossings, which
in turn improves the legibility of the display. They also mini-
mize bends (as bends occur only at 0◦ or 90◦ angles), which
further enhances the legibility of the display. Recall from
Figure 2 that, when using FIsViz, users may have difficulties
in distinguishing (i) the pair {a, c, d} & {b, c, e} from (ii) the
pair {a, c, e} & {b, c, d}. In contrast, WiFIsViz and FpViz
show (i) frequent patterns {a, c, d} & {b, c, e} as follows:

�

�
20%[−]

a

�

b

�

c

�

�

d

�

e

�

and (ii) frequent patterns {a, c, e} & {b, c, d} as follows:

�

�
20%[−]

a

�

b

�

c

�

�

d

�

e

�

Hence, with WiFIsViz and FpViz, users can easily distin-
guish between these two pairs of frequent patterns.

While these two visualizers effectively display all the fre-
quent patterns that can be mined from a dataset, they may
suffer from the following potential problems.

Potential Problem 1. Both WiFIsViz and FpViz show
all the frequent patterns. In very large datasets for many
real-life applications, it is not unusual that a huge number
of frequent patterns can be returned due to pattern explo-
ration. Note that, given a domain of m items, there are
potentially 2m − 1 non-empty frequent patterns.

Potential Problem 2. The two visualizers use different
types of icons (e.g., filled circles, unfilled circles) for repre-
senting items within a pattern. As such, users may not fully
understand or remember the meanings of filled and unfilled
circles. In very large datasets, it is not unusual for multiple
frequent patterns to have the same frequency. To reduce the
number of horizontal lines representing frequent patterns of
the same frequency and to attempt to squeeze all horizontal
lines onto the screen display, both WiFIsViz and FpViz ap-
ply several compression techniques. One of them is to merge
two frequent patterns X and Y of the same frequency if X is
a prefix of Y . Then, to distinguish X from Y in the merged

19

result, the visualizers fill the circles corresponding to the last
items of X and Y . See Example 1.

Example 1. Given frequent patterns {a, b, c} & {a, b, c, d}
of the same frequency, both WiFIsViz and FpViz merge their
corresponding lines into one line connecting four circles rep-
resenting items a, b, c & d in the patterns. To indicate that
{a, b, c} is a prefix of {a, b, c, d}, the visualizers fill the cir-
cle c representing the last item of {a, b, c} and the circle d

representing the last item of {a, b, c, d} as shown below:

a
�

�

b
�

�

c
�

�

d

�

merge
=⇒ �

�

a

�

b

�

c

�

d

�

However, without prior training and/or reminder, users may
not know or may forget the meaning of the filled circles. Our
very recent evaluation showed that, in these situations, users
sometimes wondered why some circles were filled and some
were not.

Potential Problem 3. With WiFIsViz and FpViz, users
may perform some unnecessary actions. Recall that merging
multiple horizontal lines that represent a frequent pattern
and its prefixes (e.g., lines representing {a, b, c, d} and its
prefix {a, b, c} were merged into a single line in Example 1)
is one of the compression techniques. Another compression
technique is to collapse several horizontal lines representing
frequent patterns of the same frequency onto a single hor-
izontal line. In order to know the details of the patterns
embedded within the resulting line, the two visualizers pro-
vide users with a [+] button for expanding such a line. In
general, the visualizers provide users with a [+] button for
every line. As some of these lines may not be the result
of collapsing multiple horizontal lines. Consequently, ex-
panding these lines is unnecessary because these lines are
identical to their expansion. See Example 2.

Example 2. Consider two frequent patterns {a, b, d} and
{b, d} of the same frequency (say, 25%). When using this
compression technique, the two horizontal lines are collapsed
onto one connecting three circles (representing items a, b

and d) with the circle for d filled. Users need to expand such
a line by clicking the [+] button in order to see that such
a “collapsed” line represents two frequent patterns {a, b, d}
and {b, d}, as shown below:

�

�
25%[+]

a

�

b

�

c d

� expand

=⇒
collapse

⇐= �

�
25%[−]

a

�

b

�

�

c d

�

�

In real-life applications, many lines may need to expand.
However, at the same time, there may exist lines that do not
need to expand. For instance, reconsider the two frequent
patterns {a, b, c} and {a, b, c, d} in Example 1. If they are the
only two patterns of a particular frequency (say, 15%), then
it is unnecessary to expand the line for frequency 15%. The
reason is that, as one frequent pattern is a prefix of another,
the resulting line is just a result of merging the prefix with
its“extension” (i.e., not a result of collapsing multiple lines).
Hence, the expanded view is identical to its collapsed view,
shown as follow:

�
�

15%[+]
a

�

b

�

c

�

d

�
expand

=⇒
collapse

⇐=
�

�
15%[−]

a

�

b

�

c

�

d

�

Therefore, it is an unnecessary action to expand such a
line.

To cap, while WiFIsViz and FpViz reduce the number of
bends and crossover of polylines by using horizontal lines,
they both may suffer from a few potential problems when
handling very large datasets. First, the number of patterns
to be displayed can be huge, especially when using very low
minimum support threshold minsup. Thus, showing only
some patterns may help. Second, horizontal lines often con-
nect two types of circles (filled and unfilled ones). Users may
not know or may forget the reason why some circles are filled
and some are not. Third, there are still a lot of horizontal
lines that can be expanded as every line is accompanied with
a [+] button for potential expansion. However, some of these
lines do not need to be expanded as their expanded views
would be identical to their collapsed views.

3. CloseViz: VISUALIZING CLOSED FRE-
QUENT PATTERNS

In this section, we propose a simple yet powerful visualizer,
called CloseViz, for showing useful patterns in the form of
closed frequent patterns.

3.1 Showing Only Closed Patterns
To provide users with useful patterns among the exponen-
tial number of frequent patterns and to avoid presenting
redundant information to users, our proposed CloseViz only
shows closed frequent patterns (instead of all the frequent
patterns).

Definition 1. (Closed Pattern [29, 42]). A pattern X ,
which is a non-empty subset of all domain items, is frequent
if its frequency (or support value) is no less than the user-
specified minimum support threshold minsup. Then, a fre-
quent pattern X is closed if there does not exist any proper
superset of X having the same frequency as X .

In other words, if there are two frequent patterns X and
Y such that (i) Y is a proper subset of X and (ii) they
both have the same frequency, then CloseViz does not dis-
play Y because Y is not a closed frequent. Since (i) X is
a proper superset of Y and (ii) X has the same frequency
as Y , it would be redundant to display Y . By visualizing
only closed frequent patterns, CloseViz greatly reduces the
number of useful patterns to be displayed. This solves Po-
tential Problem 1.

It is important to note that, while CloseViz reduces the num-
ber of patterns to be visualized, it retains all the frequency
information (cf. showing maximal patterns, which loses fre-
quency information). Recall that a frequent pattern Z is
maximal if no proper superset of Z is frequent.

At the back end, our proposed CloseViz can be connected to
any closed frequent pattern mining algorithm (e.g., A-Close
[29], CLOSET [30], CHARM [43]), which mines closed fre-
quent patterns from datasets. Once the mining algorithm
found closed patterns, CloseViz effectively displays them so
that users can explore the mined results visually. Alter-
natively, CloseViz can also be connected to any frequent

20

a
�

�

b
�

�

c
�

�

d

�

merge

=⇒ �
�

15%[−]
a

�

b

�

c

�

d

�
collapse

=⇒
expand

⇐=
�

�
15%[+]

a

�

b

�

c

�

d

� �
�

15%
a

�

b

�

c

�

d

�

(b) CloseViz shows
(a) FpViz [23] shows frequent patterns {a, b, c} and {a, b, c, d} the same patterns

Figure 3: Comparison of two visualizers in showing {a, b, c, d} and its prefix {a, b, c} (Example 3).

�

�
25%[−]

a

�

b

�

�

c d

�

�

collapse

=⇒
expand

⇐= �

�
25%[+]

a

�

b

�

c d

�

�

�
25%

a

�

b

�

c d

�

(b) CloseViz shows
(a) FpViz [23] shows frequent patterns {a, b, d} and {b, d} the same patterns

Figure 4: Comparison of two visualizers in showing {a, b, d} and {b, d} (Example 4).

pattern mining algorithm (e.g., Apriori [1], FP-growth [11]),
which finds all frequent patterns (including closed patterns
as well as non-closed ones). With this alternative, once the
mining algorithm found all frequent patterns, CloseViz per-
forms an extra step to filter out all non-closed patterns from
all the frequent patterns, and it then displays only the closed
ones.

At the front end, CloseViz shows closed frequent patterns in
a two-dimensional space. The x-axis shows the m domain
items. CloseViz allows users to specify their preference on
the ordering of these domain items (e.g., put those items
of interest such as promotional items on the left and less
interesting items on the right side of the x-axis). The default
is lexicographical order. The y-axis shows the frequencies of
the closed frequent patterns. Here, CloseViz provides users
with two options:

1. Use a linear scale to show all possible frequency values.
For instance, given three closed patterns of frequencies
20%, 40% and 80%, CloseViz with this option uses a
linear scale so that users can easily get some insight
about the relative frequencies of these closed patterns
at a glance. Practically, users can easily notice that the
closed pattern near the top portion of the display (at
frequency 80%) is twice as frequent as the one slightly
below the middle portion of the display (at frequency
40%), which in turn is twice as frequent as the one
near the bottom portion of the display (at frequency
20%).

2. Show only existing frequency values. For instance,
given three closed patterns of frequencies 20%, 40%
and 80%, CloseViz with this option evenly divides the
vertical space into three regions (one for each of the
three frequency values 20%, 40% and 80%) so that no
space is wasted for non-existing frequency values. As
more space is allocated for existing frequency values,
users can clearly visualize the useful patterns.

In general, CloseViz represents each closed pattern X con-
sisting of k items (i.e., k-itemset) by a horizontal line con-
necting k circles, where each circle represents an item within
X . The frequency of X is then represented by the y-position
of the line representing X .

3.2 Representing Closed Patterns with One
Type of Icons/Circles

Even though the number of closed patterns is usually smaller
than that of frequent patterns, it is not impossible for two
closed patterns to have the same frequency. In these situa-
tions, CloseViz applies some compression techniques, which
are similar—but not identical—to those of WiFIsViz or
FpViz. Recall from Example 1 that, given frequent patterns
{a, b, c} and {a, b, c, d} of the same frequency, WiFIsViz and
FpViz merge the two horizontal lines corresponding to these
two frequent patterns into a single line and fill some circles.
The sole reason of using two different types of icons (namely,
filled and unfilled circles) in WiFIsViz and FpViz is to enable
users to visualize both a pattern and its prefix (i.e., filled cir-
cle indicates the last item of an itemset) in the merged line.
In contrast, the representation provided by CloseViz is much
simpler. No such merge is needed when CloseViz handles a
pattern X with its prefix having the same frequency. The
reason is that any prefix of X cannot be a closed pattern if
X has the same frequency as its prefix. Hence, the prefix
does not need to be shown. See Examples 3 and 4.

Example 3. Let us revisit Example 1, in which we are
given two frequent patterns {a, b, c} and {a, b, c, d} of the
same frequency (say, 15%). As shown in Figure 3(a), FpViz
[23] merges the two horizontal lines corresponding to these
two frequent patterns into a single line. To distinguish the
prefix {a, b, c} from {a, b, c, d}, FpViz fills the circles rep-
resenting items c and d so as to indicate the last items of
the two patterns. In contrast, our proposed CloseViz only
needs to show {a, b, c, d}. The reason is that, for frequent
pattern {a, b, c}, there exists a proper superset {a, b, c, d}
that has the same frequency as {a, b, c}. Thus, {a, b, c} is
not a closed frequent pattern. Consequently, CloseViz only
shows {a, b, c, d} as a horizontal line connecting four circles
a, b, c and d (as shown in Figure 3(b)); it does not need to
fill any of four circles.

Example 4. Let us revisit Example 2, in which we are
given two frequent patterns {a, b, d} and {b, d} both of fre-
quency 25%. As one pattern is not a prefix of another, FpViz
[23] does not merge the two horizontal lines corresponding
to these two frequent patterns into a single line. Instead,
FpViz uses another compression techniques: It collapses the
two lines onto one so as to reduce the number of horizontal

21

�

�
25%[+]

a

�

b

�

c d

�

e

�
expand

=⇒
collapse

⇐= �

�
25%[−]

a

�

b

�

�

c d

�

�

�

e

� �

�
25%[+]

a

�

b

�

c d

�

e

�
expand

=⇒
collapse

⇐= �

�
25%[−]

a

�

b

�

c d

�

�

e

�

(a) FpViz [23] shows {a, b, d}, {b, d}, and {d, e} (b) CloseViz shows the same patterns

Figure 5: Comparison of two visualizers in showing {a, b, d}, {b, d}, and {d, e} (Example 5).

lines to be displayed. Again, FpViz fills the circle represent-
ing item c so as to indicate the last items of the two pat-
terns. See Figure 4(a). In contrast, our proposed CloseViz
only needs to show {a, b, d}. The reason is that, for fre-
quent pattern {b, d}, there exists a proper superset {a, b, d}
that has the same frequency as {a, b, d}. Thus, {b, d} is not
a closed frequent pattern. Consequently, CloseViz only
shows {a, b, d} as a horizontal line connecting three circles
a, b and d (as shown in Figure 4(b)); it does not need to fill
any of three circles.

3.3 Expanding a Line in the Collapsed View
Only when Needed

Our proposed CloseViz shows closed patterns normally in
the (default) collapsed view so as to reduce the amount of
vertical space required for displaying all closed patterns. As
this collapsed view may hide some details, CloseViz provides
users with an option to expand the “collapsed” line by click-
ing the [+] button. By so doing, users would be able to
clearly obtain all the details. Note that the [+] button is
not put for every line; it is put whenever it is needed. More
specifically, CloseViz only puts a [+] button for a horizontal
line when its collapsed view is different from its expanded
view. In other words, if the collapsed view and the expanded
view of a line are identical, CloseViz would not show the [+]
button and thus users would not waste their time expand-
ing a line that does not need expansion. Note that, besides
clicking the [+] button to expand a “collapsed” line, users
can also click the [−] button to collapse an expanded line.
See Example 5.

Example 5. Let us revisit and modify Example 4. If we
were to add a frequent pattern {d, e} of frequency 25%, then
FpViz [23] would collapse the three lines into a (solid) line
connecting four circles with those for items d and e filled (as
shown in Figure 5(a)). In contrast, our proposed CloseViz
would show a dashed line connecting four circles and provide
a [+] button. This would allow users to expand and reveal
the details. When expanding such a line, CloseViz would
show two lines. See Figure 5(b).

Note that CloseViz uses dashed lines to represent the results
of collapsing multiple lines onto one (cf. FpViz represents
both the “collapsed” results as well as real frequent patterns
using solid lines). Moreover, CloseViz only shows a [+] but-
ton for every dashed line, which requires expansion to reveal
all the details; it does not show a [+] button for any solid
line, which does not require expansion (cf. FpViz puts a [+]
button on every line). Recall from Examples 3 and 4 that
CloseViz does not put the [+] button for the line for closed
pattern {a, b, c, d} or {a, b, d}.

If two closed patterns happen to share a common prefix,
CloseViz also collapses their corresponding lines onto a sin-

�

�
10%[+]

c

�

d

�

e

�

f

�
expand
=⇒

collapse

⇐= �

�
10%[−]

c

�

d

�

e

�

f

�

Figure 6: CloseViz shows {c, d, e} and {c, d, f} (Ex-
ample 6).

gle line and provides a [+] button to allow users to expand
or explore the details. See Example 6.

Example 6. Given frequent patterns {c, d, e} and {c, d, f}
of the same frequency, CloseViz collapses their horizontal
lines onto one and provides users with the [+] button to
expand the single line. Conversely, users can click the [−]
button to collapse the expanded lines. See Figure 6.

To recap, our proposed CloseViz solves Potential Problem 1
by showing only closed patterns instead of all frequent pat-
terns. The number of closed patterns is usually much lower
than the number of frequent patterns. Moreover, CloseViz
solves Potential Problem 2 by using a much simpler represen-
tation (for closed patterns) that of FpViz (for all frequent
patterns). CloseViz does not need to use both filled and
unfilled circles; it only uses unfilled circles. Furthermore,
CloseViz solves Potential Problem 3 by putting [+] buttons
only for dashed lines, which represent results of collapsing
multiple lines onto one. No [+] button is needed for solid
lines, which represent real closed patterns.

3.4 Observations
The following are some observations on the representation of
closed patterns and their frequencies when using CloseViz:

• If a closed pattern Y is a proper subset of another
closed pattern X , then CloseViz must show Y at a fre-
quency above X . The reason is that (i) the frequency
of Y cannot be lower than that of X (due to the Apri-
ori property of patterns) and (ii) the frequency of Y

cannot be the same as that of X (due to the definition
of closed patterns).

• CloseViz provides information about the presence of
items in some patterns. For example, if a circle repre-
senting an item x appears on a solid horizontal line at
a particular frequency (say, p%), then users can induce
that x is contained in the closed pattern represented
by such a solid line. On the other hand, if a circle rep-
resenting an item x appears on a dashed horizontal line
at frequency p%, then user can induce that x is con-
tained in at least one closed pattern of frequency p%.

• Similarly, CloseViz provides information about the ab-
sence of items from any patterns. For example, if a cir-
cle representing an item x′ does not appear on the hor-
izontal line at a particular frequency (say, q%), users

22

can induce that x′ is guaranteed not to appear in any
closed pattern of frequency q%.

• CloseViz greatly reduces the number of patterns to be
shown by presenting only closed patterns, which are
often a small subset of all frequent patterns.

• Most importantly, CloseViz retains all frequency infor-
mation (i.e., no information loss). Users can easily de-
duce all frequent patterns and their frequencies based
on the closed patterns (and their frequency informa-
tion) presented by CloseViz.

• CloseViz only uses one type of icons—namely, unfilled
circles—to present items within closed patterns. Thus,
the presentation of information is clear. Users neither
need to learn the meanings of filled and unfilled circles
nor require distinguishing the filled circles from unfilled
ones.

• CloseViz does not put [+] buttons on all lines. Buttons
only appear on dashed lines because they are the re-
sults of collapsing lines that represent multiple closed
patterns onto one line. To reveal details in the ex-
panded view, users can click the [+] button and Clo-
seViz expands the dashed line. Conversely, by clicking
the [−] button on the expanded line, users get back
the collapsed view.

• CloseViz does not put [+] on solid lines because they
are not results of collapsing lines (which represent mul-
tiple closed patterns) onto one line. The expanded
view and the collapsed view of these solid lines are the
same. It would be a waste of resources and an unnec-
essary action to expand the solid lines.

4. SUPPORTING VISUAL EXPLORATION
In this section, we describe some interactive features of Clo-
seViz, which enables users to perform visual exploration.

First, to help users to visually explore the mined (closed)
patterns, our proposed CloseViz allows users to specify his
preference on visualization of closed patterns. For example,
if users are interested in finding those patterns containing
some particular items (says, “computers”), users can click
the x-labels of these items. CloseViz then ensures that all
patterns containing these interesting items are clearly visi-
ble. To a further extent, as CloseViz does not fill any circle
representing an item, circles could be filled with different
colours to indicate different items of interest to users.

Second, CloseViz gives users an option to choose one or
more relationships of some user-selected closed pattern X .
Choices include (i) all closed proper prefixes of X , (ii) all
closed proper subsets of X , (iii) all closed proper “exten-
sions” of X , (iv) all closed proper supersets of X , etc. For
example, given a closed pattern X = {b, c, d} of frequency
36%, CloseViz may find the following closed patterns: Its
proper prefixes {b} and {b, c} with frequency values 54%
and 44% respectively, its proper subset {c, d} of frequency
48%, its proper “extensions” {b, c, d, e} and {b, c, d, e, f} with
frequency values 32% and 28% respectively, and its proper
superset {a, b, c, d} of frequency 24%.

Third, CloseViz permits users to select closed patterns of
different cardinality to be displayed. By doing so, users do

not need to view and explore all the closed patterns in one
shot. Instead, users can view and explore some (e.g., closed
1-itemsets, closed 2-itemsets, etc.) at a time.

Fourth, CloseViz also provides users with details on demand
(i.e., provides more details upon user request). In general,
CloseViz gives users an overview of the entire collection of
closed patterns and then allows users to interactively select
parts of the patterns for which they request more details.
For instance, when users hover the mouse over different parts
of the display (say, hover on a sector of a dashed horizontal
line), CloseViz shows a list of closed patterns represented by
such a dashed line.

Fifth, CloseViz enables users to select a subset of domain
items to be displayed on the x-axis and a smaller range of
frequency values to be displayed on the y-axis. Once users
made their selection, CloseViz only shows closed patterns
involving the selected domain items and within the selected
frequency range.

5. EVALUATION
In this section, we show our results on evaluating the pro-
posed CloseViz.

5.1 Reduction in the Number of Displayed
Useful Patterns

We compared our proposed CloseViz with some closely re-
lated visualizers (FIsViz [24], WiFIsViz [25], FpViz [23]).
We used (i) several IBM synthetic datasets [1], (ii) some real-
life databases (e.g., mushroom dataset) from UC Irvine Ma-
chine Learning Depository, and (iii) a student-course data-
base for our university. The following were some observa-
tions:

• FIsViz presented frequent patterns as huge numbers
of polylines, which were bent and crossed over each
other. As such, it was not easy to effectively visualize
the displayed frequent patterns.

• WiFIsViz avoided the bends and crossovers of poly-
lines. However, it used a half-screen to show huge
numbers of frequent patterns and another half-screen
to show their frequencies. Since too many frequent
patterns were squeezed onto a half-screen, it was not
easy to effectively visualize the displayed frequent pat-
terns.

• FpViz used a full-screen to display all frequent pat-
terns. However, it used both filled and unfilled circles
in the representation. Without a good understand-
ing of the meaning of the filled vs. unfilled circles may
make users puzzle about the interpretation of patterns.
Moreover, all the horizontal lines were accompanied
with [+] buttons so that users may end up expand-
ing many lines that did not need expansion (e.g., the
collapsed view of a horizontal line—which was not the
result of collapsing multiple lines—was identical to its
expanded view).

• CloseViz showed only closed patterns. For each of the
datasets used in the evaluation, the number of closed
patterns was much smaller than the number of all fre-
quent patterns. Consequently, fewer lines were shown

23

by CloseViz. As they were horizontal lines, there were
not crossovers of lines. Moreover, CloseViz only used
one type of icons—namely, unfilled circles. As such,
there was no need to distinguish filled circles from un-
filled ones. Furthermore, CloseViz only put [+] but-
tons on dashed line (which needed expansion to reveal
the details). In other words, when the line was not
a result of collapsing multiple lines (i.e., a solid line,
whose the collapsed view was identical to the expanded
view), CloseViz did not put [+] buttons so that users
did not waste their time in expanding a line for no ex-
tra information. See the following tables, which show
some samples on the numbers of patterns returned by
the above four visualizers and the numbers of lines dis-
played by these visualizers.

IBM synthetic dataset:
#patterns #lines

FIsViz 60,753 60,753 polyline sectors
WiFIsViz frequent 189 (expandible)

FpViz patterns horizontal lines
CloseViz 1,603 closed 60 solid lines +

patterns 129 (expandible) dashed lines

Student-course database:
#patterns #lines

FIsViz 421 421 line sectors
WiFIsViz frequent 20 (expandible)

FpViz patterns horizontal lines
CloseViz 107 closed 3 solid lines +

patterns 17 (expandible) dashed lines

As observed from the above tables, CloseViz reduced the
amount of information (#patterns) to be displayed and the
amount of work for exploration (#lines to be expanded).

5.2 Closed Patterns as Surrogates for Fre-
quent Patterns

To assess the effectiveness of conveying closed patterns, we
carried out a user study with CloseViz. The study was pri-
marily case-based, within which two groups of users were
required to answer different questions based on the visualiza-
tions of a given dataset (e.g., database containing informa-
tion about courses taken by students). The scenario was that
users need to identify closed patterns and make decisions
based on their observations. We recruited 12 participants
and separated them into two groups: (i) those who have
data mining background and (ii) those who do not. None
of the participants (regardless which of the two groups) was
exposed to any form of visualization for frequent patterns—
including our proposed CloseViz for visualizing closed fre-
quent patterns. (As ongoing work, we are recruiting more
participants.)

To test the expressiveness of our visualization, we formu-
lated some questions that require participants to perform
some level of analytical reasoning with the visualization.
Examples of these questions include (i) Which course was
most frequently taken (i.e., course with highest enrolment)?
How many students were enrolled in that course? (ii) Which
pairs of courses were frequently taken together? What were
their frequencies? (iii) Which collections of k courses were
frequently taken together by students, and what were their
frequencies? (iv) To avoid exam hardship, which collections
of three courses would one avoid scheduling within a time
window of 24 hours?

We began the evaluation by presenting our CloseViz and
asking the participants to explore it at their own will. We
did not give them any information regarding what the sym-
bols and representations meant in the visualization. We
first questioned them on what they were able to identify.
Evaluation results showed that, due to the simplicity of
the representation of closed patterns by CloseViz, most of
the participants were able to identify the basic meaning be-
hind the representation (e.g., frequency was assigned to the
y-axis, courses was assigned to the x-axis, circles denoted
the items within useful patterns, [+] buttons only associ-
ated with dashed lines).

Afterwards, we gave the participants detailed information
on how to read the graphs. Participants were then able to
get a better understanding on what the solid and dashed
lines meant. Evaluation results showed that a majority of
the participants were able to correctly answer most of the
questions. As expected, among the two groups of partici-
pants, the one with data mining background was more fa-
miliar with the concept of closed frequent pattern (which
was new to participants without data mining background).
Hence, participants with data mining background were all
able to correctly derive frequent patterns using the shown
closed patterns. This illustrated that the closed patterns
shown by CloseViz can be served as surrogates for the fre-
quent patterns.

5.3 Visual Exploration
In addition, we also asked the participants to try out other
visualizers (FIsViz, WiFIsViz, FpViz). All participants liked
CloseViz as it was much simpler (e.g., no need to distinguish
the filled circles from unfilled ones) and it showed fewer lines
(e.g., other three were quite crowded). Figure 7 shows snap-
shots of these four visualizers. As observed from Figure 7(a),
FIsViz was crowded—especially on the bottom portion of
the screen. It was not easy to visualize useful patterns (es-
pecially those with low frequencies). Moreover, polylines
were bent and crossed over each other, it was not easy to
trace the line sectors of some interesting patterns. As shown
in Figure 7(b), the use of horizontal lines in WiFIsViz (in-
stead of polylines) made it easier to trace the line sectors
of some interesting patterns. However, the displayed in-
formation was packed as it used a half-screen to show the
frequent patterns and another half-screen to show their fre-
quencies. Participants needed to either (i) click on a line of
a particular frequency (on the left half-screen, which trig-
gered WiFIsViz to highlight the corresponding patterns on
the right half-screen) to find out all patterns of that fre-
quency or to (ii) click on a specific frequent pattern (on the
right half-screen, which triggered WiFIsViz to highlight the
corresponding horizontal line on the left half-screen) to find
out the frequency of that pattern. In either case, it was not a
straightforward task. Observed from Figure 7(c) that FpViz
used the full-screen for showing the frequencies of patterns.
However, every horizontal line was solid and was accompa-
nied with [+] buttons. Participants did not know which line
should be expanded and which should not. In contrast, as
shown in Figure 7(d), some lines (e.g., for frequency 12) did
not accompany with [+] buttons as these solid lines do not
require expansion. Only the dashed lines, which accompa-
nied with [+] buttons, required expansion. Moreover, fewer
lines were shown.

24

(a) FIsViz [24] (b) WiFIsViz [25] (c) FpViz [23]

(d) Our proposed CloseViz

Figure 7: Snapshots of the four visualizers showing useful patterns mined from a student-course database.

Next, we evaluated the functionality of CloseViz. When
compared CloseViz (which only shows closed patterns) with
FIsViz, WiFIsViz and FpViz (which show all frequent pat-
terns), all four visualizers provide users with the same infor-
mation. As closed patterns are concise representation of all
frequent patterns (i.e., with no information loss), users can
obtain frequencies of all non-closed frequent patterns from
the collection of closed patterns.

We also evaluated the performance of CloseViz: (i) We var-
ied the size of the datasets. We measured the time both for
mining closed patterns and for constructing the display lay-
out (by using our proposed CloseViz). The results showed
that the runtime (which includes CPU and I/Os) increased
linearly with the number of transactions in the dataset.
(ii) We varied the number of items in the domain. The re-
sults showed that the runtime increased when the number of
domain items increased. (iii) We also varied the user-defined
frequency threshold minsup. When minsup increased, the
number of patterns that satisfy the threshold (i.e., frequent
patterns to be displayed) decreased, which in turn led to a
decrease in runtime.

6. CONCLUSIONS
Frequent pattern mining is an important aspect of KDD.
Many mining algorithms return a collection of the mined
patterns in the form of a textual list of frequent patterns.
This list can be very long and difficult to comprehend. As
“a picture is worth a thousand words”, it is desirable to have
visualization systems. However, many existing visualiza-
tion systems were not designed to show frequent patterns.
For those that were designed to do so, they display every
frequent pattern. When handling very large datasets, the
number of frequent patterns to be displayed can be huge
due to pattern explosion. To improve this situation, we

proposed a simple yet powerful closed frequent pattern vi-
sualizer called CloseViz, which provides users with explicit
and easily-visible information among the closed patterns.
Specifically, it represents closed patterns as horizontal lines
in a two-dimensional graph. CloseViz greatly reduces the
number of displayed patterns without losing any frequency
information. As such, the displayed closed patterns mined
from a dataset can be served as surrogates for all frequent
patterns that can be mined from the same dataset. More-
over, CloseViz also provides users with interactive features
for visual exploration. Evaluation results showed the useful-
ness of CloseViz in visualizing useful patterns in the form of
closed patterns.

As ongoing work, we are conducting more extensive experi-
ments to evaluate CloseViz. We are also investigating alter-
native orderings of domain items in the x-axis of CloseViz
to see if an intelligent ordering would optimize the layout of
horizontal lines. As future work, we would like to explore
alternative representations (e.g., Cartesian contour [14], con-
ditional profile summary [31]) of other useful patterns (e.g.,
approximate closed itemsets [7], fault-tolerant frequent pat-
terns [32]).

7. ACKNOWLEDGMENTS
This project is partially supported by Natural Sciences and
Engineering Research Council of Canada (NSERC) in the
form of research grants.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proc. VLDB
1994, pp. 487–499.

[2] C. Ahlberg. Spotfire: an information exploration

25

environment. ACM SIGMOD Record, 25(4),
pp. 25–29, 1996.

[3] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel.
Visual classification: an interactive approach to
decision tree construction. In Proc. KDD 1999,
pp. 392–396.

[4] S. Berchtold, H.V. Jagadish, and K.A. Ross.
Independence diagrams: a technique for visual data
mining. In Proc. KDD 1998, pp. 139–143.

[5] J. Blanchard, F. Guillet, and H. Briand. Interactive
visual exploration of association rules with
rule-focusing methodology. KAIS, 13(1), pp. 43–75,
2007.

[6] C. Brunk, J. Kelly, and R. Kohavi. MineSet: an
integrated system for data mining. In Proc. KDD
1997, pp. 135–138.

[7] H. Cheng, P.S. Yu, and J. Han. AC-Close: efficiently
mining approximate closed itemsets by core pattern
recovery. In Proc. IEEE ICDM 2006, pp. 839–844.

[8] C.H. Chih and D.S. Parker. The persuasive phase of
visualization. In Proc. KDD 2008, pp. 884–892.

[9] B. Goethals, W. Le Page, M. Mampaey. Mining
interesting sets and rules in relational databases. In
Proc. ACM SAC 2010, pp. 997–1001.

[10] J. Han and N. Cercone. RuleViz: a model for
visualizing knowledge discovery process. In Proc. KDD
2000, pp. 244–253.

[11] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent
patterns without candidate generation: a
frequent-pattern tree approach. Data Mining and
Knowledge Discovery, 8(1), pp. 53–87, 2004.

[12] H. Hofmann, A.P.J.M. Siebes, and A.F.X. Wilhelm.
Visualizing association rules with interactive mosaic
plots. In Proc. KDD 2000, pp. 227-235.

[13] T. Iwata, T. Yamada, and N. Ueda. Probabilistic
latent semantic visualization: topic model for
visualizing documents. In Proc. KDD 2008,
pp. 363–371.

[14] R. Jin, Y. Xiang, and L. Liu. Cartesian contour: a
concise representation for a collection of frequent sets.
In Proc. KDD 2009, pp. 415–425.

[15] D.A. Keim. Information visualization and visual data
mining. IEEE TVCG, 8(1), pp. 1–8, 2002.

[16] D.A. Keim and H.-P. Kriegel. Visualization techniques
for mining large databases: a comparison. IEEE
TKDE, 8(6), pp. 923–938, 1996.

[17] D.A. Keim and J. Schneidewind (eds.). Special issue
on visual analytics. ACM SIGKDD Explorations, 9(2),
2007.

[18] Y. Koren and D. Harel. A two-way visualization
method for clustered data. In Proc. KDD 2003,
pp. 589–594.

[19] L.V.S. Lakshmanan, C.K.-S. Leung, and R.T. Ng.
Efficient dynamic mining of constrained frequent sets.
ACM TODS, 28(4), pp. 337–389, 2003.

[20] H. Lam, D. Russell, D. Tang, and T. Munzner. Session
viewer: visual exploratory analysis of web session logs.
In Proc. IEEE VAST 2007, pp. 147–154.

[21] C. K.-S. Leung. Frequent itemset mining with
constraints. Encyclopedia of Database Systems,
pp. 1179–1183, 2009.

[22] C.K.-S. Leung and C.L. Carmichael. FpVAT: a visual
analytic tool for supporting frequent pattern mining.
ACM SIGKDD Explorations, 11(2), pp. 39–48, 2009.

[23] C.K.-S. Leung and C.L. Carmichael. FpViz: a
visualizer for frequent pattern mining. In Proc. VAKD
2009, pp. 30–39.

[24] C.K.-S. Leung, P.P. Irani, and C.L. Carmichael.
FIsViz: a frequent itemset visualizer. In Proc.
PAKDD 2008, pp. 644–652.

[25] C.K.-S. Leung, P.P. Irani, and C.L. Carmichael.
WiFIsViz: effective visualization of frequent itemsets.
In Proc. IEEE ICDM 2008, pp. 875–880.

[26] C.K.-S. Leung, Q.I. Khan, Z. Li, and T. Hoque.
CanTree: a canonical-order tree for incremental
frequent-pattern mining. KAIS, 11(3), pp. 287–311,
2007.

[27] C.K.-S. Leung, R.T. Ng, and H. Mannila. OSSM: a
segmentation approach to optimize frequency
counting. In Proc. IEEE ICDE 2002, pp. 583–592.

[28] T. Munzner, Q. Kong, R.T. Ng, J. Lee, J. Klawe,
D. Radulovic, and C.K.-S. Leung. Visual mining of
power sets with large alphabets. Technical report UBC
CS TR-2005-25, Department of Computer Science,
The University of British Columbia, Vancouver, BC,
Canada, 2005.

[29] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In Proc. ICDT 1999, pp. 398–416.

[30] J. Pei, J. Han, and R. Mao. Closet: an efficient
algorithm for mining frequent closed itemsets. In Proc.
ACM SIGMOD Workshop on DMKD 2000, pp. 21–30.

[31] A.K. Poernomo and V. Gopalkrishnan. CP-summary:
a concise representation for browsing frequent
itemsets. In Proc. KDD 2009, pp. 687–696.

[32] A.K. Poernomo and V. Gopalkrishnan. Towards
efficient mining of proportional fault-tolerant frequent
itemsets. In Proc. KDD 2009, pp. 697–706.

[33] G. Pölzlbauer, A. Rauber, and M. Dittenbach. A
vector field visualization technique for self-organizing
maps. In Proc. PAKDD 2005, pp. 399–409.

[34] K. Puolamäki and A. Bertone (eds.). Special issue on
visual analytics and knowledge discovery. ACM
SIGKDD Explorations, 11(2), 2009.

[35] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis,
and visualization of hierarchically structured data
using Polaris. In Proc. KDD 2002, pp. 112–122.

[36] N. Tatti. Maximum entropy based significance of
itemsets. In Proc. IEEE ICDM 2007, pp. 312–321.

[37] N. Tatti and J. Vreeken. Finding good itemsets by
packing data. In Proc. IEEE ICDM 2008, pp. 588–597.

[38] P.C. Wong and J. Thomas. Visual analytics. IEEE
CG&A, 24(5), pp. 20–21, 2004.

[39] L. Yang. Pruning and visualizing generalized
association rules in parallel coordinates. IEEE TKDE,
17(1), pp. 60–70, 2005.

[40] X. Yang, S. Asur, S. Parthasarathy, and S. Mehta. A
visual-analytic toolkit for dynamic interaction graphs.
In Proc. KDD 2008, pp. 1016–1024.

[41] J. Yuan, Y. Wu, and M. Yang. From frequent itemsets
to semantically meaningful visual patterns. In Proc.
KDD 2007, pp. 864–873.

[42] M.J. Zaki. Closed itemset mining and non-redundant
association rule mining. Encyclopedia of Database
Systems, pp. 365–368, 2009.

[43] M.J. Zaki and C.-J. Hsiao. CHARM: an efficient
algorithm for closed itemset mining. In Proc. SDM
2002, pp. 457–473.

26

A framework for mining interesting pattern sets

Tijl De Bie
University of Bristol, Intelligent

Systems Laboratory
Merchant Venturers Building,

Bristol, BS8 1UB, UK
tijl.debie@gmail.com

Kleanthis-Nikolaos
Kontonasios

University of Bristol, Intelligent
Systems Laboratory

Merchant Venturers Building,
Bristol, BS8 1UB, UK

kk8232@bristol.ac.uk

Eirini Spyropoulou
University of Bristol, Intelligent

Systems Laboratory
Merchant Venturers Building,

Bristol, BS8 1UB, UK
enxes@bristol.ac.uk

ABSTRACT
This paper suggests a framework for mining subjectively in-
teresting pattern sets that is based on two components: (1)
the encoding of prior information in a model for the data
miner’s state of mind; (2) the search for a pattern set that is
maximally informative while efficient to convey to the data
miner.

We illustrate the framework with an instantiation for tile
patterns in binary databases where prior information on the
row and column marginals is available. This approach im-
plements step (1) above by constructing the MaxEnt model
with respect to the prior information [2, 3], and step (2) by
relying on concepts from information and coding theory.

We provide a brief overview of a number of possible ex-
tensions and future research challenges, including a key chal-
lenge related to the design of empirical evaluations for sub-
jective interestingness measures.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining ; I.5.1 [Pattern recognition]: Models—Sta-
tistical

Keywords
Subjective interestingness measures, pattern set mining, prior
information, maximum entropy.

1. BACKGROUND

Motivation.
Since the introduction of the Apriori algorithm significant

progress has been made in developing increasingly efficient
and sophisticated frequent itemset mining algorithms. To-
day, we have arguably reached the point where progress in
this respect has become incremental. Perhaps to a lesser
extent the same holds for other pattern mining techniques.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

Instead, in real-life applications of pattern mining new
challenges have surfaced (e.g. [15]). Most of these are cen-
tered around the observed discrepancy between what is in-
tuitively interesting and the existing objective proxies, such
as the frequency of a pattern. Indeed, a strong consensus is
growing that finding better objective formalizations of what
is intuitively or subjectively interesting is critical for the
success of the field. A second problem is that the set of all
patterns deemed interesting by any specific interestingness
measure contains too many patterns to be convenient for
human consumption, many of which are highly redundant.

Matching these two problems, two research avenues are
being pursued by the research community. The first problem
is addressed by the search for better interestingness mea-
sures, even if that comes at an added computational cost
when compared to monotonic or anti-monotonic measures
(see [8] for an overview). The second problem is addressed
by searching for interesting pattern sets, rather than for sets
of interesting patterns (see e.g. [4, 1, 7, 5, 6]). These lines of
research are by no means independent, and many methods
attempt to address them simultaneously.

Despite significant recent progress on both these fronts,
we believe the challenges cannot be fully met by proposing
yet more objective measures with new properties. Indeed,
counting only probabilistically inspired objective interest-
ingness measures, in the survey paper [8] the authors list 38
of them. It is clear that expanding this zoo of interesting-
ness measures even further would not increase transparency
of the research area. Instead, the recent advances need to
be embedded in a flexible and interactive approach.

In this paper, we discuss a framework that tries to achieve
this, which we believe addresses both problems discussed
above. It relies on formalizing the prior information of the
data miner, and contrasting the data with this formal repre-
sentation of the state of mind of the data miner. In this way,
a pattern set can be found that is subjectively interesting,
and data mining algorithms become intelligent communica-
tion interfaces between the data and the data miner.

Below we mostly consider patterns (such as itemset and
tile patterns) in binary databases. However, we wish to
stress that our framework is more widely applicable, and we
will therefore introduce it in general terms.

Subjective interestingness measures.
The distinction between subjective and objective interest-

ingness measures was first made in [21, 18, 19], and adopted
in the survey paper [8]. Subjective interestingness measures
as they conceive them are interestingness measures that do

27

not only depend on properties of the pattern, but also on
the class of users of the data mining algorithm. They should
quantify at least one of two properties: unexpectedness, or
actionability. Both are clearly strongly dependent on the
data miner’s prior information or goals.

The first attempt at designing a subjective interesting-
ness measure quantifying unexpectedness was made by [21].
They made use of a so-called belief system, which consists of
a set of rules with associated degrees of belief, representing
what the data miner knows about the data. Then, patterns
are deemed more interesting if they strongly affect these be-
liefs in a Bayesian sense. The approach had some drawbacks,
the most important of which is probably that interactions
between these rules were hard to control: patterns implied
by combinations of rules from the belief system would be
deemed unexpected by their system, if they are not implied
by any single rule by itself. While the practical implication
of this work is perhaps limited for these reasons, its impor-
tance as a conceptual breakthrough is hard to overestimate.

Still, since this work, very few other subjective interesting-
ness measures have been proposed (see [8] for an overview).
The most promising one is probably from [12], where the
authors suggest to model transactions in a binary database
using Graphical Models, and use this model to compute the
expected support of itemsets. Itemsets are then deemed
more interesting if their support deviates more strongly (in
absolute sense) from the expected support given this model.
The Graphical Model could be designed such that it reflects
the prior information of a data miner, although it is less
clear how to do this in practice (where data miners may
have limited expertise in Graphical Models). Furthermore,
it assumes that transactions are independent and identically
distributed, often false in practice. And lastly, the absolute
difference between expected and observed support may not
be the best measure of unexpectedness.

Some other recent approaches claim to take into account
prior information to quantify interestingness, such as [5, 6,
9, 17, 11]. All of these are based on hypothesis testing to for-
malize interestingness, where the null hypothesis is designed
to represent the prior information of the data miner. Those
based on randomization approaches [9, 17, 11] are compu-
tationally demanding but are also more flexible. Still, they
are limited to specific types of prior information, such as on
row and column marginals [9, 17], and more recently also
cluster structure and the frequency of given itemsets [11].

The framework proposed in this paper aims to be flexible,
as well as realistically useful in real-life data mining settings.

2. A GENERAL FRAMEWORK
Below we will first introduce the rationale of our frame-

work. Then we will detail the two basic components: model-
ing the prior information, and searching for pattern sets that
are interesting when contrasted to this prior information.

2.1 Shifting the focus: from the data to the
miner

In designing objective interestingness measures, a data
mining researcher tries to enter the mind of an imagined
practitioner, and attempts to rationalize what may be in-
tuitively of interest to this practitioner. This approach has
born fruit in two respects. First, it has helped in understand-
ing which types of interestingness measures are amenable

to efficient algorithms. Second, for specific applications,
special-purpose interestingness measures are often desirable.

However, the strategy of entering a specific practitioner’s
mind inevitably falls short of the design of measures that
can be applied in a wide range of circumstances, by a wide
range of practitioners. In the design of flexible subjective
measures, we believe it essential to consider the data mining
practitioner as the object of study, no less than the data
itself. Such a Copernican revolution, shifting the focus from
the data to the data mining process (Fig. 1), is likely to be
necessary if we intend to capture subjectivity. Indeed, this
can only be achieved if the algorithm is aware of what the
data miner wants or does not want to learn about the data.

Figure 1: The researcher’s point of view when
designing objective interestingness measures (left,
where he coincides with the practitioner) and sub-
jective interestingness measures (right).

In this paper, we aim to formalize the data mining process
as we envisage it with the above considerations in mind.
We do this by explicitly modeling the data miner’s prior
information and hence what is not interesting to him. What
is of interest to the data miner is then what contrasts with
this prior information. Hence, in the actual mining step, a
set of patterns is sought that is maximally interesting given
the prior information. We believe this approach safeguards
the exploratory nature of pattern mining methods better
than a more limiting approach that directly specifies what
is interesting.

Thus, there are two essential components in our frame-
work: the modeling of the data miner’s prior information,
and the subsequent search for a pattern set of which the
occurrence in the data contrasts with this model of prior
information. Below we will fill in this framework more con-
cretely, detailing both these aspects individually.

Throughout this Section, we will complement the theory
with an example for the case of binary databases represented
by the binary matrix D ∈ {0, 1}m×n, where the prior in-
formation is on row and column marginals

∑
j D(i, j) and∑

i D(i, j), and where we are searching for interesting tiles
defined by a subset of rows I ⊆ {1, · · · , m} and a subset of
columns J ⊆ {1, · · · , n} such that D(i, j) = 1 for all i ∈ I
and j ∈ J . This example is given for concreteness only, and
in Sec. 3.3 we aim to make it clear that it can be applied
much more generally.

In this paper, random variables will be underlined (e.g.
D), while deterministic samples of these random variables
are not underlined (e.g. D is a specific instance of the data).

2.2 Formalizing prior information in a prob-
abilistic model

As suggested in [2, 3], we choose to formalize the prior in-

28

formation in a probability distribution P defined over the
data space D. This can be done by setting up a prob-
abilistic model for the data D that satisfies certain con-
straints imposed by the prior information. Note that typ-
ically, the data D itself is composed of a set of variables:
D = {dk, k = 1 : n} with typically dk ∈ {0, 1} or dk ∈ N,
or dk ∈ R (e.g. the entries in a database).

The type of prior information we will consider is in the
form of expectations about certain functions fi (further called
constraints functions) of the data D:

EP {fi(D)} = ci.

Example 2.1. As an example for a binary database D,
we will consider two classes of constraint functions, com-
puting the row and the column marginals of the database:
fr

i (D) ,
∑

j D(i, j) and fc
j ,

∑
i D(i, j). I.e., the con-

straints are:

EP

{∑
j

D(i, j)

}
= cr

i ,

EP

{∑
i

D(i, j)

}
= cc

j ,

where cr
i and cc

j are the required expected row and column
marginals. This means that we assume that the data miner
has certain expectations on each of the row and column marginals
as prior information.

Using constraints on the expectations of certain properties
of the data, as quantified by the functions fi, is a flexible way
of encoding prior information. We will give more examples
in Sec. 3.3.1

As in practical settings prior information will not be so
rich as to uniquely determine the distribution, an inductive
bias needs to be chosen. For various reason discussed in [2,
3] and references therein, it makes sense to choose the dis-
tribution of maximum entropy among all those that satisfy
the constraints:

maxP −EP {log(P (D))},
s.t. EP {fi(D)} = ci,

P (D) ≥ 0 ∀D ∈ D,∑
D∈D

P (D) = 1.

We refer to the resulting problem as the MaxEnt model.
It is well-known (and easy to prove using Lagrange dual-

ity theory) that the solution of the maximum entropy op-
timization problem takes the form of an exponential family
distribution (see e.g. [23]):

P (D) =
1

Z(λ)
exp

(∑
i

λifi(D)

)
,

where λ denotes a vector containing all λi and Z(λ) =∑
D∈D exp

(∑
i λifi(D)

)
is known as the partition function

and ensures normalization. The values of the Lagrange mul-
tipliers λi can be found by solving the dual optimization

1Note that hard constraints of the form g(D) = c can
also be imposed in this way, by using an indicator func-
tion fi(D) , δ(g(D) = c). Then, g(D) = c with probability
one if EP {fi(D)} = 1 is imposed as a constraint.

problem, which is formally identical to minimizing the neg-
ative log-likelihood of data D that satisfies the constraints
fi(D) = ci exactly. Mathematically, this optimization prob-
lem is written as:

minλ log(Z(λ))−
∑

i

λici.

It is worth emphasizing that the exponential family of dis-
tributions encompasses most widely used distributions, in-
cluding the Bernoulli, binomial, Poisson, and Gaussian dis-
tributions and many others.

Example 2.2. The MaxEnt model for prior information
on row and column marginals on a binary database D as de-
fined in Ex. 2.1 is given by an exponential family distribution
that can be rewritten as a product distribution of Bernoulli
random variables, one for each database entry:

P (D) =
∏

Pij(D(i, j)),

Pij(D(i, j)) =

exp(λr

i +λc
j)

1+exp(λr
i +λc

j)
if D(i, j) = 1,

1
1+exp(λr

i +λc
j)

if D(i, j) = 0.

Note that although the random variables for the different
database entries are independent, their distributions are re-
lated by the parameters λr

i for the rows and λc
j for the columns.

These are obtained by solving the optimization problem:

minλr,λc

∑
i,j

log(1 + exp(λr
i + λc

j))−
∑

i

λr
i c

r
i −

∑
j

λc
jc

c
j .

It is shown in [3] that this problem can be solved remarkably
efficiently even for very large databases.

The duality relation between the Maximum Entropy and
Maximum Likelihood problems, with the exponential fam-
ily as a hinge between them, is well known in mathemat-
ical statistics. Also in the Graphical Models literature, it
has been studied for the special case where the constraint
functions fi are so-called potential functions, i.e. (often in-
dicator) functions that pertain to a typically small subset
of the variables dk making up the data D. (See [23] for an
overview.) In this context, however, we do not constrain
ourselves to this situation. Allowing more general func-
tions leads to models such as in Ex. 2.2 where the graphical
model representation would be trivial (all random variables
di making up the data D are independent), but where the
distributions of these random variables are related by shar-
ing certain parameters in a non-trivial way.

2.3 Information theory to quantify subjective
interestingness

Given a probabilistic model capturing the prior informa-
tion about the data, we can now attempt to quantify the
interestingness to the data miner of a given pattern in the
data. Taking account of the prior information, such quan-
tification will be inherently subjective.

Formalizing patterns.
Before we can proceed, we need to define formally what

we mean by a pattern.

Definition 2.3. Let π : D → R be a function that we call
a pattern function and that is an element from the pattern

29

space Π, i.e. π ∈ Π. A pattern in the data D is defined as
an equality of the form:

π(D) = π̂.

We call π̂ ∈ R the pattern strength.

For example, in the context of frequent itemset mining, the
pattern functions π considered are functions that evaluate
as the frequency of an itemset. The set Π of all such func-
tions is determined by the collection of all frequent itemsets.
This definition is different from the standard definition in
frequent pattern mining: the pattern for us is not the recur-
ring element, but the fact that the element recurs a certain
number of times in the data (as expressed by the equality
π(D) = π̂). Let us give another example:

Example 2.4. We define the pattern functions as indica-
tor functions for the presence of a tile, and denote them as
πI,J for a tile with rows I and columns J . I.e.:

πI,J(D) =

{
1 if ∀i ∈ I, j ∈ J : D(i, j) = 1,
0 otherwise.

Hence, the pattern strength for a pattern function πI,J is
equal to 1 if the tile (I, J) is present in the data, and 0
otherwise.

We believe the risk associated with using a non-standard
definition for a pattern is outweighed by an important bene-
fit: it allows us to deal with a much broader class of problems
than just frequent pattern mining. As a result, the frame-
work described in this paper can be transferred easily to
other types of patterns, such as tile patterns (see Ex. 2.4),
clustering patterns, classification patterns, etc.

The self-information of a pattern.
Before defining the interestingness of a pattern π(D) = π̂,

we need to quantify the amount of information in the pat-
tern as perceived by the data miner. This is adequately
formalized by the Shannon self-information of the pattern
with respect to distribution P that formalized the prior in-
formation, defined as the negative log-probability of seeing
the observed pattern strength. Formally:

Definition 2.5. The self-information of a pattern π(D) =
π̂ is defined as:

I(π, π̂) = − log (Pr(π(D) = π̂)) .

It is equal to the number of bits required to encode the pattern
strength π̂ of this pattern under a Shannon optimal code with
respect to the MaxEnt distribution P for D.

The self-information is known to be the code length of a
random variable (here the pattern strength π̂ in the data D)
under a Shannon-optimal code with respect to the distribu-
tion P . Hence, this quantity also has an interpretation in
terms of description length.

Example 2.6. Under the MaxEnt model from Ex. 2.2 and
with the tile pattern functions πI,J from Ex. 2.4, the self-
information of a pattern πI,J(D) = 1 is defined as:

I(πI,J , 1) = − log

(∏
i∈I,j∈J

Pij(1)

)
,

= −
∑

i∈I,j∈J

log

(
exp(λr

i + λc
j)

1 + exp(λr
i + λc

j)

)
.

With the MaxEnt model as a representation of the practi-
tioner’s uncertainty about the data, the self-information is
equal to the information conveyed to the data miner when
he is informed about the fact that a certain tile is present
rather than not present in the data D. It is equal to the
required code length if the presence of the tile is described
using a Shannon optimal code with respect to the MaxEnt
distribution. The self-information would be larger if, given
the prior information, the tile is less likely to be present.

The description length of a pattern.
The self-information I(π, π̂) is the amount of information

transmitted to the data miner if he is made aware of the
presence of the pattern π(D) = π̂. The question now arises
what the true cost is of communicating this information to
the data miner. Can this be done more efficiently than with
a Shannon-optimal code with respect to the MaxEnt model?
It is clear that this is only possible if there are patterns in the
data that are not to be expected given the MaxEnt model of
the prior information, and we argue these are precisely the
ones the data miner is interested in.

The true cost of conveying a pattern can be quantified
by establishing a coding scheme to encode pattern functions
π ∈ Π, and similarly for the pattern strengths π̂. Then
the cost can be defined as the description length D(π, π̂) of
the pattern π(D) = π̂ in this coding scheme. The coding
scheme should be chosen so that it reflects the perceived
complexity of a pattern. This approach based on coding
lengths is convenient, as it will allow us to compare like with
like when contrasting this cost with the self-information.

A difficulty with this approach is the design of a code,
which can be cumbersome. As a shortcut, however, one
could just specify the code lengths directly. When doing so,
they must be such that, in principle, a uniquely decipherable
code exists with these code word lengths. This means that
the code words must satisfy Kraft’s inequality [14].

A set of code lengths satisfying Kraft’s inequality can be
designed conveniently by first defining a distribution Q over
the set of patterns that may need to be encoded, and choos-
ing the code lengths of all patterns equal to their negative
log-probability under that distribution. (Note that the ob-
tained code lengths may not be integers, but they can still
be achieved in the limit if a large number of these patterns
are to be encoded using a Shannon-optimal coding under
that chosen distribution.)

It should be stressed that the distribution Q and the de-
scription length are unrelated to the prior information the
data miner holds about the data, and they are also unre-
lated to any stochastic process from which the data may
have been sampled. It is no more than a mathematical con-
struct to help the data miner in quantifying how hard it is
for him to grasp a given pattern.

Definition 2.7. The description length D(π, π̂) of a pat-
tern π(D) = π̂ is given by its description length in a code
chosen by the data miner, capturing the complexity of pat-
terns as he perceives it.

It is convenient to compute the description length indi-
rectly, by first specifying a distribution Q over the space of
possible pairs (π, π̂). Then the description length of a pat-
tern π(D) = π̂, is given by the negative log-probability of
(π, π̂) under distribution Q:

D(π, π̂) = − log(Q(π, π̂)).

30

Example 2.8. To encode a tile (I, J), for each row i and
for each column j we need to specify whether or not i ∈ I
and j ∈ J . We will design a coding scheme for tiles using
the approach above, i.e. by first defining a distribution Q.

Let us assume that a data miner finds a tile easier to grasp
if it contains less rows and less columns, with no distinction
made between different rows or columns. Then, the distri-
bution Q could be defined as:

Q(πI,J , 1) = p|I|+|J|(1− p)m+n−|I|−|J|q,

Q(πI,J , 0) = p|I|+|J|(1− p)m+n−|I|−|J|(1− q),

where the 0 ≤ p, q ≤ 1, p is the probability that any row or
column belongs to a tile, and q is the probability of a pattern
strength equal to 1. After some calculations, this means that
the description length of a tile pattern with π̂ = 1 is equal
to:

D(πI,J , 1) = C + (|I|+ |J |)D,

where C = −(m+n) log(1−p)− log(q) and D = log
(

1−p
p

)
.

For p > 0.5, it holds that D > 0, and the description
length increases linearly with the circumference of the tile.
The parameter p allows the data miner to zoom in to small
tiles (smaller p), or zoom out to larger tiles (larger p). In
the experiments below, we chose p equal to the density of
the database, i.e. equal to the probability that a randomly
selected row contains a 1 in a randomly selected column. We
further chose q equal to 1, such that only pattern strengths
equal to 1 would be considered.

The interestingness of a pattern.
The interestingness of a pattern can now be determined

by comparing the description length of the pattern with its
information content. In particular, we suggest to define the
interestingness of a pattern as follows:

Definition 2.9. The interestingness of a pattern π(D) =
π̂ is defined as the ratio of the self-information over the de-
scription length:

interestingness(π, π̂) =
I(π, π̂)

D(π, π̂)
.

Intuitively speaking, this quantifies the compression ratio of
the information in the pattern by reporting it as a pattern in
the code representing the data miner’s intuition of simplicity.

Example 2.10. For the tile example, the interestingness
measure will be larger if it covers as many (improbable) en-
tries as possible (i.e. if it has a large surface), while having
a circumference that is as small as possible.

Interesting pattern sets.
In practice, a data miner will rarely be satisfied with just

the single most interesting pattern. It is likely that the data
miner has a certain finite processing capability, determin-
ing an upper bound u on the total description length of all
patterns reported. Given this upper bound, the data miner
would like to receive as much information as possible when
contrasted with his prior information. This information can
be captured adequately by the self-information of the pat-
tern set, defined as:

Definition 2.11. The self-information of a pattern set
is defined as the negative log-probability that these patterns
are present in the data under the MaxEnt model. Formally,
with pattern functions π ∈ Πs ⊆ Π and associated pattern
strengths π̂ = π(D) observed in the data D:

I ({(π, π̂), π ∈ Πs}) = − log (Pr(π(D) = π̂,∀π ∈ Πs))

with respect to the MaxEnt distribution for D.

To maximally satisfy the data miner, the data mining al-
gorithm should thus solve the following optimization prob-
lem:

maxΠs⊆Π I ({(π, π̂), π ∈ Πs}),

s.t.
∑

π∈Πs

D(π, π̂) ≤ u.

The most interesting pattern set subject to the imposed con-
straint on the description length is then defined by the op-
timal set of pattern functions Πs.

This optimization problem is unfortunately a combinato-
rial one, and it is hard to solve in general. However, in
some cases it may be easy to solve it or at least to solve it
approximately. Let us illustrate this with an example.

Example 2.12. The self-information of a pattern set with
tile-patterns πI,J = 1 with πI,J ∈ Πs is given by:

I ({(πI,J , 1), πI,J ∈ Πs})

= − log

 ∏
i,j:∃πI,J∈Πs:i∈I&j∈J

Pij(1)

 ,

= −
∑

i,j:∃πI,J∈Πs:i∈I&j∈J

log

(
exp(λr

i + λc
j)

1 + exp(λr
i + λc

j)

)
.

Hence, the problem can be phrased as follows. Given is the
set of entries in the database and a collection of subsets of
this set as covered by the tiles. Each entry has a certain
weight (− log(Pij(D(i, j))), and each subset has a certain
cost (D(π, π̂)). The pattern set mining task can then be for-
mulated as the search for a collection of subsets maximizing
the sum of the weights of the entries in its union, subject to
an upper bound on the sum of the costs of the subsets in the
collection.

When the tiles in the database are precomputed using an
existing itemset miner (e.g. CHARM), this is an instance
of the weighted budgeted maximum coverage problem, which
is NP-hard but can be solved approximately to an approx-
imation ratio of 1 − 1

e
using a greedy algorithm. In this

algorithm, the k’th tile pattern is selected as the one that
maximizes the ratio of the sum of the weights of the newly
covered entries divided by its description length.

We have applied this method to two abstract databases
after stop-word removal and stemming (turned into binary
databases by considering rows as texts and columns as words).
The first dataset contains all KDD abstracts between 2001
and 2008, which amounts to 843 documents and 6154 unique
stemmed words. The second dataset contains all ICDM ab-
stracts up to 2007, amounting to 859 documents and 5006
unique stemmed words. The 15 tiles first selected in this
greedy algorithm are shown in the left column of Tab. 1.
Only tiles corresponding to closed itemsets and a support of
at least 5 were considered (as mined by CHARM [24]).

31

KDD
Mining interesting pattern sets (current paper) |I| Tiling databases as described in [7] |I|

machin support svm vector 25 data paper 389
art state 39 algorithm propos 246

labeled learn supervised unlabeled 10 data mine 312
associ mine rule 36 base method 202

express gene 25 result show 196
frequent itemset 28 problem 373

graph larg network social 15 data set 279
column row 13 approach 330

algorithm faster magnitud order 12 model 301
algorithm data paper propos real synthetic 27 present 296

answer question 18 larg 286
nearest neighbor 13 applic 271

classifi featur machin support text vector 9 perform 266
precis recal 14 real 255

decis tree 33 inform 240
ICDM

Mining interesting pattern sets (current paper) |I| Tiling databases as described in [7] |I|
classifi machin support vector 24 algorithm data 338
analysi discriminant lda linear 10 paper propos 237

associ database mine rule 28 data mine 279
bayes naiv 23 show 370

algorithm discov frequent mine pattern 28 base 369
nearest neighbor 20 result 359

art state 22 approach 349
cluster data dimensional high subspace 11 method 346

account take 19 set 343
play role 14 problem 330

document text word 14 present 305
exampl learn train 17 perform 265

algorithm em expect maximization 8 model 239
frequent item itemset mine 18 larg 221

classifi decis tree 20 algorithm propos 271

Table 1: This table reports the sets of words (columns) J as well as the number of documents |I| containing
all these words for the top-15 selected tiles (I, J) for two methods: the tile-mining approach described in this
paper (left column) and the tiling databases approach (right column).

3. DISCUSSION
Below we will first try to further elucidate our frame-

work by providing interpretations and clarifying some of the
choices we have made. Then we will first discuss some rela-
tions with prior work. Finally, we will provide an overview of
the extensions and various instantiations of our framework
that are subject of current work and that pose interesting
challenges for future work.

3.1 Interpretations and remarks

The nature of the data.
In introducing the general framework, we have intention-

ally treated the data D as a monolitic block. Our intention
with this is to emphasize that our focus is broader than data
sets. Our framework should be able to handle data that can-
not elegantly be cast in a set, such as networks or relational
databases. A set often suggests that the elements are com-
mensurable or comparable, perhaps even sampled i.i.d. from
some distribution. In this paper, we do not want to make
such suggestion or unrealistic assumptions.

The nature of the prior information.
The term prior information may be somewhat mislead-

ing, and perhaps more accurately we could also have chosen
prior expectations. Indeed, the prior information may be
wrong (if the data miner is ill-informed), and we believe our
framework deals with this in an appropriate way. If the prior
information is incorrect, patterns that correct for this will
be flagged up as interesting, which is desirable in practice.

Another remark with regard to prior information is that
it may seem impractical to list what the data miner already
knows. However, we believe that in many cases the most
important prior information can be stated at a meta-level,
in general terms. For example, the prior information in our
running example was on all row and column marginals, spec-
ifying n+m constraints in a description of just a few words.

The code describing patterns.
There is a strong connection between a code to describe

patterns, and a syntactic choice for the patterns. Indeed,
fixing a syntax for the patterns is similar to fixing a code.
Simpler patterns in the syntax are be easier to parse and
hence probably easier to understand for a data miner.

32

A communication metaphor.
Our framework can be described using a communication

metaphor between the data (Alice) and the data miner (Bob),
whereby the data mining algorithm is the intermediary in-
terfacing with both. See Fig. 2 for a graphical illustration.
The goal in this communication protocol is to communicate
the data as efficiently as possible (i.e. with the shortest pos-
sible description), by relying on any prior information the
data miner may have. In the first instance good compres-
sion can be achieved by relying on a Shannon-optimal code
with respect to the MaxEnt model specified by this prior
information. However, if the data miner believes or hopes
that patterns of a certain easily understandable syntactic
form are present in the data, he may ask the Alice to com-
municate these separately, potentially reducing the overall
coding length. In a data mining context, of course only the
patterns would be sent, not the rest of the data.

3.2 Relations to prior work

Tiling databases.
The work on tiling databases [7] fits in most closely with

our framework, and can be described as a specific instanti-
ation of it. One of the goal in that work was to come up
with a collection of a fixed number of tiles (the pattern set)
that covers as many database entries as possible. They al-
ready observed that set covering techniques can be used to
efficiently solve this problem to a guaranteed approximation
ratio. The results on two textual datasets described above
are shown in Tab. 1.

To see how this method can be viewed as an instance of
our framework we need to specify two things: the prior in-
formation used, and the code for encoding the patterns. Let
us first consider the prior information. Since each database
entry is given the same weight, the prior information used
is empty, or perhaps non-informative such as assuming that
all row marginals are equal, and also all column marginals.
As for the coding scheme for the patterns, the same cost is
attributed to each of the tiles, such that no distinction is
made between tiles with a small or a large circumference.

In this light, it is easy to understand the difference in
output between the results of the tile mining method dis-
cussed in the running example and the tile mining method
presented in [7]. Many tiles found by our method achieve a
balance between number of words and documents, since en-
coding long stretched out tiles comes at a greater cost than
compact square tiles. Furthermore, they are less suscepti-
ble to common uninformative words, preferring tiles with
uncommon words (and although this is harder to see, also
preferring tiles overlapping with shorter documents).

KRIMP.
Another related method is KRIMP [20], which attempts to

describe the database by constructing a code table of item-
sets and encoding the database by making use of this code
table. Our approach bears some clear similarities to KRIMP,
notably the reliance on coding and description length ideas.
However, like with other objective interestingness measures,
KRIMP seems less flexible in its current form, and there
seems to be no direct way of incorporating properties of the
data miner.

Maximum entropy based significance of itemsets.

The maximum entropy principle has been used before for
the purpose of designing an interestingness measure for item-
sets [22]. Here, the frequency of an itemset is contrasted
with the expected frequency based on the frequencies of its
subsets. To compute this expected frequency, maximum en-
tropy modeling is used. While this is potentially useful in
various applications, it is still an objective measure, that
cannot be fine-tuned to suit particular data mining practi-
tioners or tasks.

3.3 Extensions and further work
We are currently working on extending the above ideas in

various ways, applying the framework to more general data
types, for more general pattern types, and for more general
types of prior information. Of course, there are significant
interactions between these extensions, but for convenience
let us discuss them one by one. After that, we will discuss
some other interesting challenges for future work.

Ongoing work.
We have introduced our framework for general data D, as

we believe it is likely to be useful for data types different from
just binary databases. A first possible extension is toward
non-binary databases, such as categorical, integer-valued,
and real-valued data (see also [2, 3]). More importantly, we
are currently working on instantiating this framework in a
flexible way for relational databases. This will allow us to
mine for interesting patterns in relational databases in the
spirit of the recent papers [16, 10], which have given a new
and promising twist to pattern mining research.

Concerning the types of pattern, in a recent paper [13] we
have discussed an instantiation of the framework for noisy
tiles, with promising empirical results. Other extensions to-
ward frequent itemsets might be of interest as well.

The prior information we have considered in the running
example in this paper was restricted to the row and column
marginals. Other types of prior informations we are cur-
rently considering are the density of certain areas in a binary
database, and the support of certain given itemsets. The
connection between MaxEnt optimization and the Graphi-
cal Models literature will allow us to use results from that
community to achieve these goals, such as the Junction Tree
algorithm and other techniques for inference and maximum
likelihood parameter fitting [23].

An extension similar to this one was made earlier in [11]
for randomization approaches to assess data mining results
[9]. They introduced different randomization strategies main-
taining different properties of a binary dataset besides the
row and column marginals, in particular the clustering struc-
ture and the frequency of certain itemsets. They suggested
this allows data mining to be done in an iterative fashion,
updating the randomization model each time a new pattern
is reported (and thus becomes part of the prior information).
Our framework could accommodate such iterative strategy
as well as an alternative to mining pattern sets, as soon as
it can handle more complex types of prior information.

Other challenges.
We mentioned earlier that the prior information does not

need to be correct for the framework to be useful. How-
ever, it would run into problems if the prior information
were inconsistent. If this is the case, the method needs to
be adapted e.g. by allowing each of the constraints to be vio-

33

Figure 2: A data mining algorithm implementing our framework can be viewed as an interface moderating
the communication between the data miner (Alice) and Bob (the data), trying to help convey the data from
Alice to Bob as efficiently as possible. It takes into account what Bob already knows (or thinks to know), as
well as the syntactic form of the patterns he believes the data may contain. This figure illustrates that for
the running example on mining interesting tiles.

lated by a small amount εi. Then, C
∑

i εi can be subtracted
from the entropy objective with C akin to a regularization
parameter, such that a trade-off is achieved between max-
imizing the entropy and achieving a good fit to the prior
information.

A second important challenge we wish to highlight is the
design of efficient algorithms that mine pattern sets as con-
sidered in this paper. For the tile mining example, we are
currently using a two-step approach, where first all tiles are
mined and subsequently they are selected in a greedy way
(and thus sorted in the order in which they were selected).
It is likely that more efficient algorithms can be devised.

Another challenge is to find out if and how actionability
[21] can be incorporated into this scheme. We suspect there
may be relations between particular coding schemes for the
patterns and certain properties of how they are going to be
used, such as the cost of exploiting a pattern or (perhaps
equivalently) the profit in exploiting the pattern. However,
it is as yet unclear to us if this is the case, or if such con-
nection would be helpful at all.

In this paper, we have chosen to put our framework on sta-
tistical foundations. However, it is conceivable that the prior
information can be captured in a knowledge base of (possi-
bly probabilistic) logical rules instead. The broad ideas of
the framework would stay in place. Doing this would bring
the framework closer to the work of [21].

Agreeing on an empirical evaluation strategy.
Finally, a bottleneck we believe this area of research is

faced with is the lack of a suitable consensus over how sub-
jective interestingness measures can be assessed empirically,
within the scope of a scientific paper. In this paper, we have
opted to present some empirical results on a textual data

set. The motivation for this is that text is intelligible, cer-
tainly if we are familiar with the corpus, and we can assess
if the method would provide us with useful insights had we
not been familiar with it. However, this risks to raise the
wrong impression that the method is supposed to compete
with text mining methods (whereas it does not exploit any
properties of text at all and any competition would be un-
fair). Another type of evaluation that is often seen is to
use the pattern sets as features for classification. We believe
that the relevance of this is limited, as a poor classification
accuracy only shows that the features are unrelated to the
label, not that they are not interesting. As a result, authors
have often resorted to quantitative surrogates such as size
of the pattern set and computation times, which are some-
times relevant but usually besides the point when the goal
is to design subjective interestingness measures. Therefore,
agreeing on an appropriate empirical evaluation strategy is
in our opinion critical to progress in this field.

4. CONCLUSIONS
In this paper, we have sketched a possible framework for

mining interesting pattern sets. In designing it, our intention
was to set it up such that it can operate as an intelligent
interface between the data miner and the data, considering
both on an equal footing. We designed it as generally as
possible, and it is not confined to any particular type of
data, pattern, or prior information.

That being said, instantiating the framework for new set-
tings is not always trivial, and issues of computational tractabil-
ity may arise. This forms perhaps the most important chal-
lenge for future research around this framework.

34

Acknowledgements
This work is supported by the EPSRC grant EP/G056447/1,
and by the European Commission through the PASCAL2
Network of Excellence (FP7-216866). KNK is also sup-
ported by a University of Bristol Centenary Scholarship.

5. REFERENCES
[1] B. Bringmann and A. Zimmermann. The chosen few:

on identifying valuable patterns. In Proc. of 7th IEEE
International Conference on Data Mining (ICDM07),
2007.

[2] T. De Bie. Explicit probabilistic models for databases
and networks. Technical report, University of Bristol
TR 123931, arXiv:0906.5148v1, 2009.

[3] T. De Bie. Maximum entropy models for prior
information on rectangular databases. Technical
report, University of Bristol TR 125861, submitted,
2010.

[4] L. De Raedt and A. Zimmermann. Constraint-based
pattern set mining. In Proc. of the 2007 SIAM
International Conference on Data Mining (SDM08),
2007.

[5] A. Gallo, T. De Bie, and N. Cristianini. Mini: Mining
informative non-redundant itemsets. In Proceedings of
2007 KDD, 2007.

[6] A. Gallo, A. Mammone, T. De Bie, M. Turchi, and
N. Cristianini. From frequent itemsets to informative
patterns. Technical report, University of Bristol TR
123936, 2009.

[7] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling
databases. In Discovery Science, 2004.

[8] L. Geng and H. J. Hamilton. Interestingness measures
for data mining: A survey. ACM Computing Surveys,
38(3):9, 2006.

[9] A. Gionis, H. Mannila, T. Mielikäinen, and
P. Tsaparas. Assessing data mining results via swap
randomization. TKDD, 1(3), 2007.

[10] B. Goethals, W. Le Page, and M. Mampaey. Mining
interesting sets and rules in relational databases. In
Proc. of the 25th ACM Symposium on Applied
Computing (ACM SAC), pages 996–1000, 2010.

[11] S. Hanhijarvi, M. Ojala, N. Vuokko, K. Puolamäki,
N. Tatti, and H. Mannila. Tell me something I don’t
know: Randomization strategies for iterative data
mining. In Proc. of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD09), pages 379–388, 2009.

[12] S. Jaroszewicz and D. A. Simovici. Interestingness of
frequent itemsets using bayesian networks as
background knowledge. In Proc. of the 10th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD04), pages 178–186,
2004.

[13] K. Kontonasios and T. De Bie. An
information-theoretic approach to finding informative
noisy tiles in binary databases. In Proceedings of the
2010 SIAM International Conference on Data Mining,
2010.

[14] L. G. Kraft. A device for quantizing, grouping, and
coding amplitude modulated pulses. Technical report,
Massachusetts Institute of Technology, 1949.

[15] K. Lemmens, T. Dhollander, T. De Bie, P. Monsieurs,
K. Engelen, B. Smets, J. Winderickx, B. D. Moor, and
K. Marchal. Inferring transcriptional modules from
chip-chip, motif and microarray data. Genome
Biology, 7(R37), 2006.

[16] M. Ojala, G. Garriga, A. Gionis, and H. Mannila.
Evaluating query result significance in databases via
randomizations. In Proc. of the 2010 SIAM
International Conference on Data Mining (SDM),
2010.

[17] M. Ojala, N. Vuokko, A. Kallio, N. Haiminen, and
H. Mannila. Randomization of real-valued matrices for
assessing the significance of data mining results. In
Proc. of the 2008 SIAM International Conference on
Data Mining (SDM08), pages 494–505, 2008.

[18] B. Padmanabhan and A. Tuzhilin. A belief-driven
method for discovering unexpected patterns. In Proc.
of the 4th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD98),

pages 94Ű–100, 1998.

[19] B. Padmanabhan and A. Tuzhilin. Small is beautiful:
discovering the minimal set of unexpected patterns. In
Proc. of the 6th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD00), pages 54Ű–63, 2000.

[20] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets
that compress. In SIAM Conference on Data Mining,
2006.

[21] A. Silberschatz and A. Tuzhilin. On subjective
measures of interestingness in knowledge discovery. In
Proc. of the 1st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD95), pages 275Ű–281, 1995.

[22] N. Tatti. Maximum entropy based significance of
itemsets. Knowledge and Information Systems,
17(1):57–77, 2008.

[23] M. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference.
Foundations and Trends in Machine Learning,
1(1-2):1–305, 2008.

[24] M. Zaki and C. Hsiao. CHARM: An efficient
algorithm for closed itemsets mining. In Proc. of the
2nd SIAM ICDM, 2002.

35

Point-Distribution Algorithm for Mining Vector-Item
Patterns

Anne M. Denton, Jianfei Wu
Department of Computer Science

North Dakota State University
Fargo, ND

{anne.denton,jianfei.wu}@ndsu.edu

Dietmar H. Dorr
Research and Development

Thomson Reuters
St. Paul, MN

dietmar.dorr@thomsonreuters.com

ABSTRACT
An algorithm is presented for finding patterns between sets
of continuous attributes and item sets. In contrast to most
pattern mining approaches, the algorithm considers multi-
ple continuous attributes as a single vector attribute. This
approach results in a separate abstraction level and allows
multiple vector attributes to be considered. We show that
the pattern mining process can uncover relationships be-
tween the vector data and item sets. Filtering according to
these patterns can be seen as feature selection at the level
of the vector attributes as opposed to individual continu-
ous attributes. In the evaluation, we show that the pattern
mining algorithm can more effectively and efficiently achieve
this filtering than a direct application of classification al-
gorithms. Patterns are identified by relating item data to
the distribution of objects within the vector space that is
spanned by the sets of continuous attributes. The Kullback–
Leibler divergence provides a quantitative measure that es-
tablishes whether the subset defined by an item set differs
from the overall distribution of data points. The set-subset
relationship of data points, which violates i.i.d assumptions,
requires an adaptation of standard algorithms for comput-
ing the Kullback–Leibler divergence. The algorithm is evalu-
ated on gene expression data and on a classification example
problem that is constructed from time series data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; I.5.2 [Pattern Recognition]: Design Method-
ology—Pattern Analysis

General Terms
Algorithms

Keywords
Pattern mining; Statistical significance; Feature selection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

1. INTRODUCTION
Advances in storage technology have long been driving the

need for new data mining techniques. Not only are typical
data sets becoming larger. The diversity of available at-
tributes is increasing in many problem domains. This work
addresses an aspect of diversity that is often overlooked:
Data mining problems commonly involve more than a sin-
gle set of attributes that fits a vector space model, and may
in fact be characterized by multiple separate sets. Those
sets provide an additional level of abstraction, and may ei-
ther derive from separate sets of experiments, or they may
have been the result of transformations from different origi-
nal data types such text, by means of the the bag-of-words
model [12], or graphs, through vector space embeddings [24,
23].

The presented work recognizes the cohesiveness of multi-
ple sets of continuous attributes and uses the combinations
for further processing. As is commonly done in data min-
ing, machine learning, and statistics, we consider those at-
tributes as dimensions in a vector space. The search for
patterns allows focusing on those vector attribute – item
set combinations for which a relationship can be shown to
exist. The pattern mining can be used as a preprocessing
step towards classification with the respective item or item
set as class label. Our work differs from conventional ap-
proaches in that multiple vector attributes are considered.
In contrast to conventional feature selection, our approach
determines the usefulness of entire vector attributes, each of
which consists of multiple continuous attributes. We focus
on data that are already provided in vector format, such as
gene expression data, and search for patterns that relate the
vector attributes to item attributes, such as those considered
in market basket research [1], i.e. attributes that are concep-
tually binary and represent presence and absence of a par-
ticular item with presence typically being less frequent then
absence. In the evaluation we show that the pattern mining
process finds existing relationships with high accuracy, even
when the underlying data has explicitly been chosen to be
noisy.

Figure 1 provides an overview of the problem. For sim-
plicity, a one-dimensional setting is chosen, but the concepts
of distributions equally apply in higher dimensions. In this
figure, the (one-dimensional) vector information determines
the horizontal position of an object. Objects are assumed
to also have item data. The presence of item 1 is indicated
through a filled red circle and the presence of item 2 through
a filled green rectangle. Objects that do not show a particu-
lar item have an empty circle or rectangle respectively. The

36

Point Distribution of all data points
Distribution of points with item 1 (strong pattern)
Distribution of points with item 2 (no strong pattern)

Point
distribu-
tions

}

Item 1
Item 2

Objects having items present
absent{

}Objects

Figure 1: Schematic of a 1-dimensional data set of
points together with two example items. Smoothed
point distributions for the overall data set as well as
for points having the individual items are shown. It
can be seen that the distribution of points with item
1 shows two peaks that are much higher than what
would be expected based on the overall distribution
(strong pattern exists). The distribution of points
with item 2 follows the overall distribution much
more closely (no strong pattern exists).

distributions are schematically shown above the data points.
It can be seen that the distribution of all data points has
three peaks, and the distribution of data points with item
2 follows this distribution mostly. The distribution of data
points with item 1, in contrast, only shows two peaks, and
they are higher than would be expected based on the over-
all distribution. Hence, a pattern can be observed between
the location of objects (vector data) and the presence of
item 1 can be observed. No clear pattern is seen between
the location information and item 2. The same reasoning
can be used for object locations in an arbitrary number of
dimensions.

The data mining of vector-item patterns was first intro-
duced in [38]. That work used histograms of density val-
ues as basis for evaluating the relationship between any one
item and a vector attribute. Significance testing was used
to evaluate whether the subset of objects that is defined by
an item results in an unexpected density distribution for the
vector data. The goal of finding vector-item-patterns does
not, however, require the step of summarizing the distribu-
tion of objects in a simple histogram. Rather, the density
distribution of the complete set of objects can directly be
compared with the subset defined by any one of the items.

A well-established measure for the difference between prob-
ability distributions is the Kullback–Leibler divergence. The
K–L divergence is not symmetric but is rather typically used
to compare a true distribution with a model, as is the case
in our application. The problem of estimating the K–L di-
vergence from data has been studied extensively [37, 28].
However these techniques typically rely on samples that are
independently drawn from the two distributions. The prob-
lem of interest in this paper is not suited to these techniques
since, by definition, the samples with the item are a subset
of all samples. Among other consequences, this means that
each data point from the subset distribution is guaranteed
to have a neighbor from the superset distribution at distance

d = 0. One-nearest-neighbor approaches such as [37] can,
therefore, not be used.

We use a robust kernel-density-estimation-based technique
[27] that makes no assumptions about the relationship be-
tween the sampling of the two distributions. Similar tech-
niques are known from kernel-density estimation [27] and
kernel-density-based clustering [13, 17]. Instead of a Gaus-
sian kernel, which does not work well in high dimensions [36],
we use a uniform kernel, for which the diameter is directly
tied to the properties of the data, leaving no free parameters
that a user would have to choose.

2. RELATED WORK
The concept of vector item patterns was first introduced

in [38] and has been applied to different data sets and simi-
larity measures in [8]. A related algorithm based on pairwise
similarity has been shown to assist in determining relevant
functional groups in Escherichia coli [9].

From the data mining perspective, the problem of relating
vector to item data can be considered either from the fre-
quent pattern mining or from the classification perspective.
Frequent pattern mining algorithms, which were originally
developed for item data alone [1], have been generalized to
continuous data [4] and combinations of item and contin-
uous data [33, 29, 5]. These algorithms do not, however,
allow considering sets of continuous attributes jointly in the
pattern mining process.

From the classification perspective, the concept of a vector-
item pattern can be compared with the question of whether
classification results are significant [16, 18]: If a class label
cannot be predicted based on a set of attributes, we can con-
clude that those attributes and the class label do not show
a pattern. Testing this for a large number of potential class
labels, corresponds to the pattern mining problem discussed
in this paper, and we use a classification-based technique
for comparison purposes. We use a significance test that
is based on 2-fold cross validation and treats the confusion
matrix [22] as a contingency table.

The vector-item pattern problem is also loosely related to
multi-view learning, where the objective is to make predic-
tions based on multiple representations [26] or to use mul-
tiple representations for clustering [3] rather than finding
which sets of features are most strongly related to which
item sets. The problem of relating item sets to multiple
continuous attributes is also discussed in the multivariate
discretization literature [2]. Note that the presented vector-
item pattern mining algorithm does not require discretiza-
tion and is, therefore, more general.

In bioinformatics applications, the problem of relating
continuous attributes, in particular gene expression data to
Boolean attributes, such as biological functions, is typically
addressed through gene set enrichment analysis, GSEA[35,
34]. In its original form, GSEA takes a single continuous
attribute as input and tests whether any one functional cat-
egory shows comparatively high gene expression overall for
genes that have that function or item. A main motivation
of this work is to improve statistical significance by consid-
ering all genes that have the particular function rather than
evaluating the expression of individual genes.

Generalizations have been developed that compare groups
of continuous attributes using a hypothesized profile, as dis-
cussed in the GSEA documentation, or results of clustering
or biclustering [30]. While the latter approach does effec-

37

x

y Clusters identi!ed
by most algorithms

Figure 2: Example of a vector-item pattern that can-
not be found by a two-step approach of clustering
and enrichment analysis. Two-dimenensional vector
information determines the location of objects in the
plane. Data points with the items set are show as
solid black and others as empty circles.

tively evaluate the relationship between multiple continuous
attributes and an item, it suffers from limitations: The ini-
tial clustering does not consider any structure given by the
item attribute. Fig. 2 illustrates this limitation: The exam-
ple shows two clear clusters that would be identified by most
clustering algorithms. Neither of these clusters shows enrich-
ment for the annotation or item that is represented by the
solid circles, since each of them has two out of five members
with the item. The genes with the item, nevertheless, show
a clear pattern that can be found by vector-item techniques
[9]. The pattern in Fig. 2 could also clearly be identified by
testing the significance of classification, which we therefore
use as comparison approach in the evaluation. Clustering
algorithms have also been adapted to use functional or item
information [19]. However, such algorithms are not suitable
in the context of gene enrichment analysis since they distort
the probability of finding enriched annotations.

The Kullback–Leibler, or K–L, divergence and other infor-
mation-theoretic measures are frequently used in data min-
ing [11, 10]. Often the K–L divergence is beneficial for data
that can be modeled through discrete random variables. In
the example of text data, each word in the corpus may be
considered as one state of a random variable and the fre-
quency of occurrence of the word is directly related to the
probability of that state. All words can be modeled through
a single random variable. Such an approach is not appro-
priate for general continuous data, which may not represent
a probability distribution. We consider each attribute as a
continuous random variable, resulting in a multidimensional
or multivariate distribution of data points within the space
of attribute values.

3. POINT–DISTRIBUTION ALGORITHM

3.1 Vector and Item Data
The algorithm assumes that multiple (D) continuous at-

tributes are considered to be related based on prior knowl-
edge. Patterns involve all of these attributes xi ∈ R, 0 ≤
i < D together as one “vector” attribute x with domain
dom(x) = RD. The set of occurring data points (extant
domain) is V ⊂ RD. Traditionally, vector space represen-

tations are used to describe all independent variables in a
particular data mining problem. Our approach differs in
that vector attributes are considered as one building block
of many.

Item data are conceptually viewed as binary attributes
B(i), 0 ≤ i < M , that represent the presence of item i, with
M distinct items occurring in the database. This view is in
accordance with the original formalism used by Agrawal et
al. [1], and the related downward closure properties of the
support of item sets apply to our problem. However, the
Kullback–Leibler divergence measure does not provide any
such pruning opportunities.

3.2 Overview
To find patterns among vector and item data we perform

the following steps
Normalization: In contrast to histogram-based tech-

niques that depend on the data having a uniform distri-
bution [38], the Kullback–Leibler divergence does not place
specific requirements on the normalization. In the evalua-
tion section, we normalize the vector data by subtracting the
mean and dividing by the norm of vector, which is typically
recommended for both the gene expression and the time se-
ries [14] we use. The algorithm does not, however, critically
depend on such a normalization.

Determine frequent item sets: Standard downward
closure considerations apply to item data.

Determine overall distribution: The distribution based
on all data points is calculated, using kernel-smoothing. The
kernel-width is chosen such that each the average number of
subset points within the kernel hypervolume is one. If this
item-support-dependent kernel-width is chosen, the overall
distribution has to be recalculated for some representative
support values.

Determine subset distribution: Each item set deter-
mines a subset of data points that define the subset distri-
bution. The distribution and the overall distribution are
sampled based on the data points with the item.

Determine Kullback–Leibler divergence: The Kull-
back-Leibler divergence is calculated for the subset distribu-
tion with respect to the overall distribution.

Repeat process for multiple vector attributes: The
process can be repeated for different vector attributes.

3.3 Kullback–Leibler Divergence
The Kullback–Leibler, or K–L, divergence is a measure of

the similarity of probability distributions. It can be written
as

D
(d)
KL(P ||Q) =

Z ∞
−∞

p(x) log
p(x)

q(x)
dx1, . . . , dxd (1)

where q is the reference distribution, which in our case is
the full distribution of all objects, and p is the distribution
of objects that have the item of interest. Both distribu-
tions are assumed to be defined over a d-dimensional vector
space. Using the law of large numbers this expression can
be estimated as follows

D
(d)
KL(P ||Q) =

1

n

nX
i=1

log
p(x(i))

q(x(i))
(2)

where the x(i) are samples drawn according to the distribu-
tion p(x). The samples that have the item are assumed to
be independent and identically distributed, i.i.d..

38

Since we do not know the probability density from which
the observed points are sampled, we have to estimate it. The
estimation of a probability density function from a distribu-
tion of data points goes back to Parzen [27] and is com-
monly done by kernel-smoothing. We use a uniform ker-
nel since Gaussian kernels are known to be problematic in
high dimensions [36]. The similarity is determined based on
whether the product exceeds a threshold. For data that are
normalized, such that they lie on a hypersphere of radius
one, this results in a uniform kernel that is equivalent one
defined based on Euclidean distance. A threshold on a Eu-
clidean distance tE can be converted to a product threshold
t given the normalization

tE =

s„
x

|x| −
y

|y|

«2

=

s
2

„
1− x

|x| ·
y

|y|

«
=

p
2(1− t) (3)

We use the product threshold because the complexity of
calculating products is lower than of calculating Euclidean
distances. A kernel-density estimator for n data points xi, i =
1, . . . , n in a d-dimensional space is given by

f̂(x) =
1

nhd

nX
i=1

K
“x− xi

h

”
(4)

where the kernel function K(x) is normalizedZ
Rd

K(x)ddx = 1. (5)

A uniform kernel is used for this purpose since Gaussian
kernels are known to be problematic in high dimensions [36]:

K(x) =
θ(1− |x|)

2dVd
(6)

f̂(x(Ω)) =
1

N

NX
i=1

K
“
x(Ω),x

(Ω)
i

”
(7)

The superscript (Ω) indicates that all vectors are normalized
to |x|=1.

K
“
x(Ω),x

(Ω)
i

”
=
θ
“
t− x(Ω) · x(Ω)

i

”
Ad

(8)

where θ is the Heaviside step function, and Ad is the section
of the d-hypersphere surface, for which the step function is
one Z

Ω

K
“
x(Ω),x

(Ω)
i

”
dx(Ω) = Ad. (9)

ensuring that the kernel function is appropriately normal-
ized.

3.4 Choice of Kernel Width
We chose a kernel width such that one data point is ex-

pected within the hyper-volume that is covered by the ker-
nel, see Fig. 3. The rationale for this choice is that once
more than one data point is expected within the kernel vol-
ume, local properties are lost. A smaller kernel volume, on
the other hand, would result in fluctuations of the proba-
bility density even for data points that are approximately

Figure 3: Kernel-density-based probability distribu-
tion function with the kernel width chosen such that
one data point with item set is expected per ker-
nel volume. The density is based on the number of
points within the fixed kernel volume.

1

t

r
θ

Figure 4: Schematic to illustrate the integration of
the cap of a hypercube.

equidistant. One may still be concerned that even a ran-
dom distribution of data points can show large variations in
p(x) if the expected number of points per kernel volume is
one. We account for random contributions to the K–L di-
vergence by comparing with randomly created subsets of the
data. Nevertheless, one may argue that a choice of kernel-
width that removes some of the random fluctuations in p(x)
might be beneficial. Our study in Sect. 4.3 shows that there
is no empirical basis for this arguments and that, in fact,
a kernel-width corresponding to one expected subset point
per kernel volume does consistently lead to the strongest re-
sults. A likely explanation is that fluctuations in random
distributions are expected to be relevant at all length scales.
Choosing a larger kernel width does not fundamentally re-
solve any of the randomness.

The number of available samples for p(x) and q(x) typ-
ically differ widely, since p(x) only has as many available
samples as there are objects with the item. This number is
normally much smaller than the total number of objects. We
use the same kernel function for q(x) as for p(x) to ensure
that those data points that are considered for q(x) include
the samples considered for p(x). Hence, there are typically
many more than one data point within the kernel volume
for q(x).

Following these assumptions, the threshold parameter t
is to be calculated such that the expected number of data
points is f = 1/Ni, where Ni is the support of the item set in
question. Fig. 4 shows the setup: We calculate the surface
of the hypersphere cap in d dimensions by integrating over
contributions for those values of θ that are smaller than the
threshold. For each value of θ, the surface of a hypersphere
in d− 1 dimension with radius r contributes to the integral.
For example, if the total density were three the points of

39

constant θ lie on a circle of radius r. Since the circle itself is
a 1-dimensional structure it is denoted as S1. The surface of
the cap can be calculated by integrating over the circles for
all values of θ that satisfy the t-threshold. In d dimensions
we get

S
(cap)
d−1 =

Z θt

0

Sd−2 r
d−2 dθ =

Z
(d− 1) Cd−1 r

d−2 dθ (10)

where Sd−2 is the surface of a hypersphere of radius 1 in
d− 1 dimensions. Cd−1 is the volume of a unit hypersphere
in d− 1 dimensions. Using

r = sin θ
dr

dθ
= cos θ

dr =
p

1− r2 dθ (11)

we can rewrite S
(cap)
d as follows assuming threshold t > 0:

S
(cap)
d−1 = d Cd−1

Z √1−t2

0

rd−2

√
1− r2

dr (12)

This integral can be performed analytically in Matlab.
Calculating the hypershere volume Cd−1 can be avoided

since only the ratio S
(cap)
d−1 /Sd−1 is needed, which can be

evaluated by integrating equation (12) up to t = 0. For
”support” being the absolute item set support we get

1

support
=

R√1−thresh2

0
rd−2√
1−r2

dr

2
R 1

0
rd−2√
1−r2

dr
(13)

In practice, are interested in thresh as a function of ”support”.
However, eq. (13) cannot be inverted analytically. We use
an interval-halving algorithm for inverting it numerically.

3.5 Algorithm Outline
The complete algorithm is summarized in Algorithm 1.

Array-based notation similar to what is used in Matlab is
assumed. The algorithm takes the data points as input. It
is assumed that frequent item sets have been determined
previously. For simplicity, we also assume that the presence
of items and item sets is provided in a binary array. It would
be straightforward to modify the algorithm to use lists of
items, but such an implementation is less concise in Matlab.
It is also assumed that a cutoff of the K–L divergence has
been determined from random subsets of the data. We use
the mean plus twice the standard deviation over a set of
random filters as cutoff.

Next, an array of similarity values is determined. In the
evaluation, data set sizes were small enough to keep this ar-
ray in memory, but the algorithm could easily be rewritten,
to avoid storing the full array. Lines 5-8 in Algorithm 1
depend somewhat on the item set support and are, there-
fore, performed for representative support values. It will
be shown, that the representative support can differ from
the actual support by a factor of two without substantially
affecting results.

The similarity threshold is then determined, given the
item set support, using eq. (13) and the interval halving
process motivated there. The binary matrix of those point
combinations that satisfy the similarity threshold (sim) is
determined. Summing over the rows of this matrix (line 8)

Algorithm 1: Point–Distribution Algorithm

Data: pts; /* normalized data points */

Data: itemSetF ilters; /* binary array */

Data: klRandCutoff ; /* mean + 2 std of KL of

random items */

Result: highKLItems; /* items with K-L

divergence more than random */

simV al = getSimilarityMatrix(pts);1

supportV als = sum(itemSetF ilters);2

repSupportV als = findReps(supportV als);3

foreach repSup ∈ repSupportV als do4

filters = findF ilters(itemSetF ilters, repSup);5

thresh = invCapRatio(dim(pts), 1/repSup);6

sim = simV al > thresh;7

densAll = sum(sim)/count(sim);8

foreach f ∈ filters do9

i = indexOf(f);10

subsetSim = sim(i, :);11

densI = sum(subsetSim)/count(subsetSim);12

kl(i) = sum(log(densI./densAll));13

highKLItems = kl > klRandCutoff ;14

return highKLItems15

gives the overall density. The subset density for the given
item set is determined by selecting only those rows that have
the particular item set (line 12). The K–L divergence for the
respective item set is then calculated.

3.6 Comparison with Classification-based Al-
gorithm

While the objective of this paper is not directly classifi-
cation, it is nevertheless possible to use classification algo-
rithms to derive corresponding results. To do so, items are
considered to be class labels. If the item can be successfully
predicted based on the vector data using classification then
it is fair to assume that there is a relationship between the
vector data and the particular item. This process has to
be repeated for each item attribute. We consider classifica-
tion to be successful if the confusion matrix, treated as a
contingency table, shows a significant relationship between
actual and predicted class labels on the test set. We use
2-fold cross-validation to derive the confusion matrix and
determine significance based on χ2 testing. Since elements
within the confusion matrix may be small, the Yates correc-
tion [39] is applied.

Notice that classification-based measures, such as accu-
racy, are also used in Section 4.2. In that section a data set is
constructed such that some items are expected to show a sig-
nificant relationship to the vector data, while others don’t.
Such an analysis is performed both for the classification-
based comparison and for the point-distribution algorithm
and should not be confused with the classification-based
algorithm discussed in this section. For the classification-
based comparison algorithm, accuracy is not directly of in-
terest, since the entire confusion matrix is necessary to de-
termine whether the classification is successful.

3.7 Comparison with Previous Approaches
The histogram-based approaches of [38] and [8] that are

used as comparison algorithms have the same objective as

40

Table 1: Results for Gene Expression Data
All Alpha Cdc15 Cdc28 Elu
259 114 117 160 166 All

119 67 85 79 Alpha
0 134 86 72 Cdc15

7E-15 3E-12 173 107 Cdc28
0 2E-16 7E-12 198 Elu
0 1E-7 0.027 5E-8

this paper: to identify item sets that show a significant pat-
tern with respect to a vector attribute. In those papers
the subset distributions are summarized using histograms.
Those histograms are compared with expected histograms
that are either derived through resampling or through a
theoretical model. The comparison runs in this paper all
use resampling, which results in higher accuracy but slower
speed. In [38] similarity is evaluated using a subspace-based
similarity measure, and [8] also presents results using a prod-
uct similarity measure. Results for both similarity measures
are presented in the comparison.

4. IMPLEMENTATION AND EVALUATION
The algorithm was implemented in MATLAB. A bitvec-

tor representation was used for items because of the concise-
ness of array-based implementations MATLAB. We did not
experience memory constraints for any of the data sets in
the evaluation. Performance results are based on running
the code on a Mac power book with a 2.6 GHz Intel Core
2 Duo Processor with 4GB 667 MHz SDRAM memory in
a Vista shell using VMware Fusion. For the classification-
based comparison the Classification Tree classifier within the
MATLAB Statistics Toolbox is used and significance is eval-
uated based on 2-fold cross-validation. A χ2 significance test
with Yates correction is used on the confusion matrix as con-
tingency table. A p-value smaller than 0.05 is considered to
indicate a significant result.

4.1 Evaluation on Gene Expression Data
The algorithm is first evaluated on gene expression data

sets from cell cycle experiments on yeast [32], which are
available for download at [31]. Results from four different
types of experiments are available, each of which includes
measurements at between 14 and 24 time points. The results
come from different types of experiments, but all of them
show cell-cycle-related time-dependent gene expression. We
only consider genes, for which all four experiments are re-
ported which leaves 5878 of the total of 6178 genes. Item
data were extracted from Interpro database that contains
information on many types of of sequence signatures includ-
ing protein domains and motifs [25]. For simplicity, we refer
to all sequence signatures as domains. Yeast domain infor-
mation was downloaded from [6]. We only consider domains
with at least 10 instances, leaving 432 domains.

The goal of the analysis in this section is to identify pro-
tein domains, that are significantly related to cell cycle ac-
tivity. Conventionally, biologists would either look at the
lists of differentially expressed genes, and try to find do-
mains or functions that occur particularly often within those
sets. Alternatively, they might use clustering or bicluster-
ing techniques and then test those clusters for enrichment.
Both types of reasoning correspond to two-step approaches,

Time-
series 1

Time-
series 2

1
1
...
0
0
...

0
0

0
0
...
1
1
...

0
0

 1
-4
 ...
 0
 3
 ...

 3
 1

 0
 1
 ...
 3
 0
 ...

-2
-2

 1
 0
 ...
 0
 0
 ...

 1
 1

 -4
 1
 ...
 0
-3
 ...

-2
 2

0
1
...
0
1
...

0
0

0
0
...
1
0
...

0
1

Vector
Data

Time Series
 Items

 Randomized
Items

Random
Walk
Time-
series

Figure 5: Schematic showing how the time series
data set is designed. Each window (after prepro-
cessing) corresponds to one vector. Items that are
constructed by assigning a label to those vectors that
come from one particular time series are expected
to be significant (time series items). Items that con-
structed by randomly assigning labels (randomized
items) are not expected to be significant.

in which the expression data are first analyzed with tra-
ditional techniques and relationships with domain or func-
tional data are evaluated based on the already completed
evaluation of the first step. Our approach, in contrast, di-
rectly searches for patterns between the expression data and
domain or functional information respectively.

Since we do not know, which domains are expected to be
significantly related to the cell cycle, we limit the discus-
sion in this section to a comparison among the four differ-
ent data sets, as well as the combination of all four. For a
quantitative evaluation against an independent standard we
refer to the next section on time series data. Table 1 shows,
in its diagonal, the total number of domains that are con-
sidered significant according to the experiments. The ”All”
entry refers to the combination of all four experiments (73
columns) and ”Alpha” (18 columns), ”Cdc15” (24 columns),
”Cdc28” (17 columns), and ”Elu” (14 columns) are used as
in the description of the original experiments. The overlap
in results is shown in the upper right corner of the table.
The lower left corner shows whether that overlap is signifi-
cant according a χ2 significance test using Yates correction.
The largest p-value is 0.02, which indicates that all values
for overlap are significant. Several of the entries have such
low p-values that Matlab reported 0. The p-values are more
consistently low than those reported using histogram-based
techniques [38].

The consistency between results from different experiments
suggests that the results do indeed represent patterns that
are biologically relevant. The comparison with the full set of
all experiments is primarily included to test whether the al-
gorithm is capable of extracting meaningful results for high-
dimensional data. It should be expected that results are
consistent between a set of experiments and one of its sub-
set. This comparison leads to p-values below the Matlab
resolution in all cases, confirming that algorithm works well
for the 73 dimensions of the full data set.

4.2 Quantitative Evaluation on Time Series
Data

41

20 40 80 160

0.5

0.6

0.7

0.8

0.9

1

Absolute Item Support

Ac
cu

ra
cy

Point−Distribution Algorithm
Histogram Algorithm (Product)
Histogram Algorithm (Subspace)
Classification−based Comparison

Figure 6: Accuracy depending on the absolute item
support, Npts. Two batches of 9∗Npts random points
are added in each setting, i.e. the relative item sup-
port is 0.037 throughout.

Secondly, the algorithm is tested on time series subse-
quence data from the same nine time series as used in [7].
Subsequences are extracted from the buoy sensor, balloon,
glass furnace, steamgen, speech, earth quake, ocean, and dar-
win of the UCR time series repository [20]. Descriptions of
these data sets are distributed with the data. One time series
(ecg) was collected independently: The Ecg series (MIT-BIH
Arrhythmia Database: mitdb100) originates from Physio-
Bank [15]. The same preprocessing steps were done as in
[7]: The buoy sensor series was compressed by averaging
over 4 consecutive values and the ecg series by averaging
over 20 consecutive values.

Figure 5 shows the design of the time series data set. Nine
items are constructed, such that they can be expected to
show a vector-item pattern with the subsequence data. Each
one of these items is associated with one of the original time
series. The binary item variable is constructed such that it
is 1 for the subsequences of its associated time series and 0
for all other subsequences, including the random walk sub-
sequences. We will refer to these items as time series items.
Nine other items, which we call randomized items, are con-
structed through random selection of subsequences. Using
this setup we do a quantitative evaluation of the algorithms
using classification-style measures, in which time series items
are the positive examples and randomized items are the neg-
ative examples. It is important to understand that although
this evaluation uses classification concepts there is no train-
ing involved. Time series subsequences were chosen since
time series subsequence data are notorious for being hard
to cluster meaningfully [21]. The averaging over 9 series is
furthermore expected to make the results generalizable.

Subsequences are extracted using a sliding window with
w = 17, and differences between successive data points are
taken, resulting in a 16-dimensional vector space, i.e. 24

dimensions. Npts subsequences that are randomly chosen
from the first 1000 windows of each time series are used
from each time series, i.e. the absolute support of all items
isNpts. In totalNsets∗Npts subsequences are non-random,
where Nsets = 9 is the number of time series. These are
combined with Nrand∗Nsets∗Npts random subsequences,
where Nrand is a parameter that is varied from 0 to 8.

0 1 2 4 8

0.5

0.6

0.7

0.8

0.9

1

Number of Batches of Random Data

Ac
cu

ra
cy

Point−Distribution Algorithm
Histogram Algorithm (Product)
Histogram Algorithm (Subspace)
Classification−based Comparison

Figure 7: Accuracy for Npts = 40 time series subse-
quences. Batches of 9∗Npts = 360 random points are
added. The reported results range from 360 to 6120
points in total.

0.5 1 2 4 8
0.6

0.7

0.8

0.9

1

Parameter Choice

Se
ns

tiv
ity

 |
Ac

cu
ra

cy
 |

Sp
ec

ific
ity

Accuracy
Sensitivity
Specificity

Figure 8: Effectiveness as a function of the choice of
a parameter that is defined as the expected number
of data points having the item set per kernel volume.

Nsets = 9 positive items are constructed from the origi-
nal time series and Nsets are constructed assigned by ran-
domly selecting sequences. Averages over 50 such runs are
reported. Unless otherwise stated, the product algorithm
choses a threshold of one expected data point with item per
kernel hypervolume. In general, accuracy is reported, al-
though Fig. 8 also shows sensitivity and specificity. Data
sets are constructed such that the number of positive and
negative items is equal, thereby avoiding problems that are
encountered when the class label is skewed.

4.3 Effectiveness
First we vary Npts and keep Nrand = 2, i.e. two batches

of Nsets ∗Npts points are added in each case. That means
that the absolute support is varied, while the relative sup-
port is kept constant (1/27 ∼ 0.037). Fig. 6 shows the accu-
racy in comparison with algorithms described in [38] and [8]
and the classification-based comparison approach discussed
in Section 3.6. It can be seen that the K–L-based algorithm

42

20 40 80 160
0.1

0.3

1

3

10

30

Absolute Item Support

C
om

pu
ta

tio
n

Ti
m

e
[s

]

Point−Distribution Algorithm
Histogram Algorithm (Product)
Histogram Algorithm (Subspace)
Classification−based Comparison

Figure 9: Computation time corresponding to Fig.
6. The total number of data points varies from 540
to 4320 within the shown range.

outperforms all comparison algorithms. Next we keep the
item support fixed at Npts = 40 and vary Nrand. Fig. 7
shows that the K–L-based approach outperforms all com-
parison algorithms.

Fig. 8 shows the dependence of accuracy, sensitivity, and
specificity on the choice of threshold for Npts = 40 and
nRand = 2. The parameter choice indicates how many
points with item set are to be expected per kernel volume.
The plot confirms that the accuracy is highest for one ex-
pected point and falls off quickly for smaller choices. For
larger choices it decreases more slowly. Fig. 8 also reports
sensitivity and specificity separately, showing that it is the
sensitivity that most strongly depends on parameter choice,
while the specificity remains stable over the tested parame-
ter range.

4.4 Efficiency
The design of the algorithm was, so far guided by the goal

of achieving accuracy more then efficiency. For the data set
sizes used in the evaluation, the execution time is neverthe-
less comparable with histogram-based approaches as well as
the classification-based comparison using the Matlab tree-
classifier, as can be seen from Fig. 9. Notice that for the
classification-based comparison, a fast tree-based classifier
was used.

5. CONCLUSIONS
We have introduced an algorithm to mine vector-item pat-

terns using Kullback–Leibler distributions of kernel densi-
ties. We have demonstrated that the resulting algorithm
is far more effective than previous algorithms, which sum-
marized point distributions first and then compared the his-
togram summaries. We have also shown that the approach is
more effective at determining vector-item relationships than
directly determining the significance of classification. We
have discussed the choice of the only parameter in the al-
gorithm, in particular the width of the kernel function, and
validated the choice empirically. We have also shown that
in a practical application to gene expression data, our re-
sulting patterns are consistent among biologically distinct
experiments.

6. REFERENCES
[1] R. Agrawal, T. Imielinski, and A.N. Swami. Mining

association rules between sets of items in large
databases. In Proc. ACM SIGMOD Int’l Conf. on
Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[2] S. Bay. Multivariate discretization for set mining.
Knowledge and Information Systems, 3:491–512, 2001.

[3] S. Bickel and T. Scheffer. Multi-view clustering. In
Proc. Fourth IEEE International Conference on Data
Mining (ICDM’04), pages 19–26, 2004.

[4] S. Brin, R. Motwani, and C. Silverstein. Beyond
market baskets: generalizing association rules to
correlations. In SIGMOD ’97: Proc. of the 1997 ACM
SIGMOD Int’l Conf. on Management of Data, pages
265–276, New York, NY, USA, 1997. ACM Press.

[5] R. Chiang, C.E. Huang Cencil, and E.-P. Lim. Linear
correlation discovery in databases: a data mining
approach. Data and Knowledge Engineering,
53:311–337, 2005.

[6] Saccharomyces Genome Database. InterProScan
results using s. cerevisiae protein sequences
ftp://genome-
ftp.stanford.edu/pub/yeast/sequence similarity/domains/
domains.tab.

[7] A. Denton. Kernel-density-based clustering of time
series subsequences using a continuous random-walk
noise model. In Proc. 5th IEEE Int’l Conference on
Data Mining (ICDM’05),, pages 122–129, Houston,
TX, 2005.

[8] A.M. Denton and J. Wu. Data mining of vector-item
patterns using neighborhood histograms.

[9] A.M. Denton, J. Wu, M.K. Townsend, and B.M. Prüß.
Relating gene expression data on two-component
systems to functional annotations in Escherichia coli.
BMC Bioinformatics, 9:294, 2008.

[10] I. S. Dhillon, S. Mallela, and D.S. Modha.
Information-theoretic co-clustering. In KDD ’03:
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 89–98, 2003.

[11] I.S. Dhillon, S. Mallela, and R. Kumar. A divisive
information theoretic feature clustering algorithm for
text classification. J. Mach. Learn. Res., 3:1265–1287,
2003.

[12] R. Feldman and J. Sanger. The Text Mining
Handbook: Advanced Approaches in Analyzing
Unstructured Data. Cambridge University Press, 2006.

[13] P. Foster. Exploring multivariate data using directions
of high density. Statistics and Computing, 8:347 – 355,
1998.

[14] M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani.
Mining the stock market (extended abstract): which
measure is best? In Proc. of the 6th ACM SIGKDD
Int’l Conf. on Knowledge Discovery and Data Mining,
pages 487–496, Boston, MA, 2000.

[15] A.L. Goldberger, L.A.N. Amaral, L. Glass, et al.
PhysioBank, PhysioToolkit, and PhysioNet.
Circulation, 101(23):e215–e220, 2000. Circulation
Electronic Pages:
[http://circ.ahajournals.org/cgi/content/full/101/23/e215].

[16] P. Golland, F. Liang, S. Mukherjee, and

43

D. Panchenko. Permutation tests for classification. In
Proc. COLT: Annual Conference on Learning Theory,
volume LNCS 3559, pages 501–515, 2005.

[17] A. Hinneburg and D.A. Keim. A general approach to
clustering in large databases with noise. Knowlege and
Information Systems, 5(4):387–415, 2003.

[18] T. Hsing, S. Attoor, and E. Dougherty. Relation
between permutation-test p values and classifier error
estimates. Machine Learning, 52(1-2):11–30, 2003.

[19] S. Kaski, J. Sinkkonen, and J. Nikkilä. Clustering gene
expression data by mutual information with gene
function. In Proc. Int’l Conf. on Artificial Neural
Networks (ICANN), pages 81–86, 2001.

[20] E. Keogh and T. Folias. The UCR time series data
mining archive, accessed 2003.
[http://www.cs.ucr.edu/
∼eamonn/TSDMA/index.html].

[21] E.J. Keogh, J. Lin, and W. Truppel. Clustering of
time series subsequences is meaningless: implications
for previous and future research. In Proc. IEEE Int’l
Conf. on Data Mining, pages 115–122, Melbourne, FL,
2003.

[22] R. Kohavi and F. Provost. Special issue on
applications of machine learning and the knowledge
discovery process. Machine Learning, 30:271–274,
1998.

[23] N. Linial, A. Magen, and M. E. Saks. Low distortion
euclidean embeddings of trees. Israel Journal of
Mathematics, 106:339–348, 1998.

[24] B. Luo, R.C. Wilson, and E.R. Hancock. Spectral
embedding of graphs. Pattern Recognition,
36:2213–2223, 2003.

[25] N.J. Mulder, R. Apweiler, and T.K. Attwood. New
developments in the InterPro database. Nucleic Acids
Research, 35:D224–228, 2007.

[26] I. Muslea, S. Minton, and C. A. Knoblock. Active
learning with multiple views. Journal of Artificial
Intelligence Research, 27:203–233, 2006.

[27] E. Parzen. On estimation of a probability density
function and mode. Ann. Math. Stat., 33:1065–1076,
1962.

[28] F. Perez-Cruz. Kullback-leibler divergence estimation
of continuous distributions. In NIPS ’07 Workshop on
Representations and Inference on Probability
Distributions, 2007.

[29] R. Rastogi and K. Shim. Mining optimized support
rules for numeric attributes. Information Systems,
26(6):425–444, 2001.

[30] R. Shamir, A. Maron-Katz, A. Tanay, C. Linhart,
I. Steinfeld, R. Sharan, Y. Shiloh, and R. Elkon.
Expander-an integrative program suite for microarray
data analysis. BMC Bioinformatics, 6:232, 2005.

[31] P.T. Spellman. Yeast cell cycle analysis project,
http://cellcycle-www.stanford.edu/, accessed 2007.

[32] P.T. Spellman, G. Sherlock, M.Q. Zhang, et al.
Comprehensive identification of cell cycle-regulated
genes of the yeast saccharomyces cerevisiae by
microarray hybridization. Molecular Biology of the
Cell, 9:3273–3297, 1998.

[33] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In Proc.

1996 ACM SIGMOD Int’l Conf. on Management of
Data, pages 1–12, Montreal, Quebec, Canada,
4–6 1996.

[34] A. Subramanian, H. Kuehn, J. Gould, P. Tamayo, and
J.P. Mesirov. Gsea-p: a desktop application for gene
set enrichment analysis. Bioinformatics, 23:3251–3253,
2007.

[35] A. Subramanian, P. Tamayo, V.K. Mootha, et al. Gene
set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proc.
Natl. Acad. Sci. USA, 102:15545–15550, 2005.

[36] M. Verleysen and D. François. The curse of
dimensionality in data mining and time series
prediction. Lecture Notes in Computer Science, 3512,
2005.

[37] Q. Wang, S.R.Kulkarni, and S. Verdu. A
nearest-neighbor approach to estimating divergence
between continuous random vectors. In 2006 IEEE
International Symposium on Information Theory,
pages 242–246, 2006.

[38] J. Wu and A. Denton. Mining vector-item patterns for
annotating protein domains. In Proc. of the Workshop
on Mining Multiple Information in conj. with the
ACM SIGKDD Int’l Conf. on Data Mining (KDD),
San Jose, Aug 2007.

[39] F. Yates. Contingency table involving small numbers
and the χ2 test. Journal of the Royal Statistical
Society (Supplement), 1:217–235, 1934.

44

Margin-Closed Frequent Sequential Pattern Mining

Dmitriy Fradkin
Siemens Corporate Research

755 College Road East
Princeton, NJ 08540

dmitriy.fradkin@siemens.com

Fabian Moerchen
Siemens Corporate Research

755 College Road East
Princeton, NJ 08540

fabian.moerchen@siemens.com

ABSTRACT
We present a new approach to mining sequential patterns that sig-
nificantly reduces the number of patterns reported, favoring longer
patterns and suppressing shorter patterns with similar frequencies.
This is achieved by mining only margin-closed patterns whose sup-
port differs by more than some margin from any extension. Our ap-
proach extends the efficient BIDE algorithm to enforce the margin
constraint. The set of margin-closed patterns can be significantly
smaller than a set of just closed patterns while retaining the most
important information about the dataset. This is shown by an ex-
tensive empirical evaluation on six real life databases.

1. INTRODUCTION
Temporal data mining exploits temporal information in data

sources in the context of data mining tasks such as clustering or
classification. Many scientific and business data sources are dy-
namic and thus promising candidates for application of temporal
mining methods. For an overview of methods to mine time series,
sequence, and streaming data see [17, 14].

One particular type of temporal data are sequences of (sets of)
discrete items associated with time stamps, for example histories of
transactions of customers in an online shop or log messages emitted
by machines or telecommunication equipment during operation. A
common task is to mine for local regularities in this data by look-
ing for sequential patterns [2] that represent a sequence of itemsets
possibly with gaps in the observation sequences.

It is well know that frequent itemset mining suffers from a com-
binatorial explosion of results when lowering the minimum sup-
port threshold. When mining sequential patterns, i.e., sequences of
itemsets on sequential databases, this effect typically becomes even
stronger. A lossless way of reducing the number of reported pat-
terns that favors longer, thus more interpretable patterns, is mining
of closed patterns. Only patterns that cannot be extended with addi-
tional items without lowering their support are reported. A straight-
forward extension of closed itemset mining are margin-closed item-
sets, also known as δ-tolerance itemsets [12]. A margin closed
pattern cannot be extended by additional items without lowering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

the support significantly, as determined by a relative or absolute
threshold.

In this work we present an efficient algorithm for mining of
margin-closed sequential patterns. The well known BIDE (BI-
Directional Extension checking) [39] algorithm is extended to en-
force the margin-closed constraints. We show that on real life data
the number of reported patterns can be greatly reduced even with
moderate margin thresholds. Using a classifier we show that the
suppressed (almost redundant) patterns were not of great impor-
tance for a specific data mining task.

Related work, mostly in the area of itemset and sequence mining,
is described in Section 2. The technical part describes preliminary
definitions (Section 3.1), the original BIDE algorithm (Section 3.2)
and the proposed extension BIDE-Margin (Section 3.3). Section 4
contains results of evaluation on real life data. Conclusion is pre-
sented in Section 5.

2. RELATED WORK
Many publications explored the question of reducing the num-

ber of patterns within a general pattern mining framework [20, 6].
In the sections below we discuss methods focused on itemset and
sequential mining as being most relevant to our work.

2.1 Itemset mining
Researchers have proposed many solutions to reduce the num-

ber of itemset patterns depending on the context in which the pat-
terns are used, for example, condensed representations [8], con-
strained itemsets [33] and combinations thereof [4, 13], and com-
pression [38, 37]. For association rule generation, closed itemsets
[31, 5] are commonly used to avoid redundant rules [43] favoring
longer patterns to generate specific rules. For frequency queries
non-derivable itemsets [7] provide a compact lossless representa-
tion favoring shorter patterns to keep the summary small.

Margin-closed itemsets have been previously proposed by the
authors for exploratory knowledge discovery tasks in the context
of temporal data mining [25, 27] and independently as δ-tolerance
itemsets for frequency estimation in [12]. Margin-closed patterns
are a specialization of closed itemsets with a constraint to limit the
redundancy among reported patterns. An itemset is closed if no su-
perset with the same frequency exists. An itemset is margin-closed
if no superset with almost the same frequency exists, where ’al-
most’ is defined by a threshold α on the relative (or absolute) dif-
ference of the frequencies. The threshold ensures a frequency mar-
gin among the reported patterns. An efficient algorithm for mining
margin-closed itemsets, extending the well-know DCI_Closed al-
gorithm [21], has been proposed in [24].

A related line of work is motivated by the fact that transaction
data is often noisy. The strict definition of support, requiring all

45

items of an itemset to be present in a transaction, is relaxed, see
[16] and references therein. These approaches can reveal impor-
tant structures in noisy data that might otherwise get lost in a huge
amount of fragmented patterns. One needs to be aware though that
such approaches report approximate support values and possibly
list itemsets that are not observed as such in the collection at all [1]
or with much smaller support.

2.2 Sequential mining
An overview of algorithms for sequential pattern mining is given

in [44]. Our approach extends the BIDE algorithm [39] that uses a
smart search space pruning and does not require the patterns found
to remain in memory until the algorithm terminates.

Motivated by approaches that have worked on itemsets, research
on reduction of the output of sequential pattern mining algorithms
includes compression of the mining result in a post-processing step
[10, 41], a condensed representation to evaluate sequential associa-
tion rules [35], and approximate patterns [45] under the Hamming
distance.

These approaches are different from the one presented here in at
least one of the following ways:

• The margin constraint favors longer patterns, whereas con-
densed representation focus at reconstruction of frequencies
for patterns not reported or compression ratio of the complete
pattern set.

• Patterns observed exactly as is, with exact frequencies, are
reported, whereas approximate patterns represent observa-
tions that may differ (slightly).

• The pruning is integrated in the mining algorithm whereas
compression is a postprocessing of the results after mining.

The presented approach therefore has merits in particular if the pat-
terns are used in a context that requires interpretation, as opposed
to automated post processing with other algorithms. Longer pat-
terns are more interpretable because they offer more context to the
analyst. While approximations that tolerate errors may be more ro-
bust, they may report approximate support values and possibly list
itemsets that are not observed as such in the collection at all or with
much smaller support. This might be misleading in exploratory ap-
plications.

A generalization of sequential patterns are partial orders [9]. In-
stead of requiring a full ordering of the itemsets in a pattern some
order relation may be unspecified. This is typically represented by a
directed graph of itemsets. In [34] it is shown that closed partial or-
ders are also a generalization of Episodes [22] that are restricted to
combinations of fully ordered and completely unordered patterns.

In [9] closed partial orders are mined by grouping of sequential
patterns and generating directed graphs. In [26] it is shown that the
grouping corresponds to an instance of the closed itemset mining
problem. [36] describes an algorithm to mine arbitrary (not nec-
essarily closed) groups of sequential patterns. Experiments on real
life data in [29] show that the grouping can both reduce or increase
the number of patterns found, depending on the dataset.

3. MINING MARGIN-CLOSED SEQUEN-
TIAL PATTERNS

3.1 Preliminaries

DEFINITION 3.1. An event sequence over a set of events Σ is a
sequence of pairs (ti, si) of event sets si ⊆ Σ ∀i = 1, . . . , n and

time stamps ti ∈ �+. The ordering is based on time, i.e. ∀i < j :
ti ≤ tj . The length of the event sequence is n.

For most of the discussion in our work (and in much of sequential
pattern mining literature) the exact values of the time stamps are
not as important as the ordering that they impose. We will therefore
omit timestamps from discussion and will treat event sequences as
just an ordered set of event sets S = {si}.

DEFINITION 3.2. A sequence database, SDB, of size N is a col-
lection of event sequences Pi, i = 1, . . . , N .

We now need to introduce a basic definition from order theory.

DEFINITION 3.3. A partial order is a binary relation ≺ over a
set S which is reflexive, antisymmetric, and transitive, i.e., for all
a, b, c ∈ P , we have that:

• a ≺ a (reflexivity);

• a ≺ b and b ≺ a imply a = b (antisymmetry);

• a ≺ b and b ≺ c imply a ≺ c (transitivity).

A set S with a partial order is a chain iff ∀a, b ∈ S: a ≺ b or
b ≺ a.

DEFINITION 3.4. A partial order pattern P is a set of event sets
{pi},i = 1, . . . , n together with a partial order ≺ over them.

DEFINITION 3.5. A sequential pattern P is a partial order pat-
tern that is a chain: p1 ≺ p2 ≺ . . . ≺ pn.

Note that in Episode mining sequential patterns are called serial
patterns.

DEFINITION 3.6. A parallel pattern P is a partial order pat-
tern with no order relations among the event sets.

DEFINITION 3.7. A sequence S = {si}, i = 1, ..., k matches a
sequential pattern P = {pj}, i = 1, ...,m (or a pattern occurs in
the sequence) iff ∃i1, ..., im with pj ⊆ sij for j = 1, ...,m, such
that ∀1 ≤ j, k ≤ m: pj ≺ pk implies ij < ik. We will denote such
a match by mi1,im(P, S).

DEFINITION 3.8. A match mi1,im(P, S) is the earliest match
iff for any other match mj1,jm(P, S) ik ≤ jk, ∀k = 1, . . . ,m,

DEFINITION 3.9. A pattern P has support(P) = s in an SDB
D if D contains s distinct event sequences that match P . A pattern
is frequent iff its support is no less than some predefined minimum
support value μ, i.e. support(P) >= μ.

In the following, when talking about patterns, we will always as-
sume that they are frequent, with some minimum support μ defined.

DEFINITION 3.10. A frequent pattern P is considered closed
in an SDB D, if is there is no pattern P ′ 	= P in D, such that
∃m(P, P ′) (i.e. P occurs in P ′) and support(P ′) = support(P).

DEFINITION 3.11. A pattern P is considered margin-closed in
an SDB D, with margin α, if is there is no pattern P ′ 	= P in D
such that P occurs in P ′ and support(P ′) > (1−α)∗support(P).

In other words, P is margin-closed if there is no pattern P ′ that
contains P and is almost as frequent.

In order to describe the algorithms in the following sections, we
need to introduce the notion of projected databases, which is ex-
tremely useful in constructing efficient algorithms for sequential
pattern mining.

46

DEFINITION 3.12. Given a pattern P = {pi}, i = 1, . . . , |P |
and a sequence S = {sj} ,j = 1, . . . , |S|, with the earliest match
mk1,km(P, S), a projection of S on P results in a projected se-
quence S|P = {st}, where t = km + 1, . . . , |S|. We refer to km
as an offset.

DEFINITION 3.13. Given a pattern P = {pi}, i = 1, . . . , |P |
and an SDB D = {Sj},j = 1, . . . , |D|, a projection of D on P is a
projected database D|P , consisting of projected sequences Sju |P ,
obtained by projecting Sju onto P . Note that if a sequence does
not match a pattern, it does not appear in the projected database.

Projected database D|P can be efficiently represented with a list
of pairs of indices (ju, tu), where ju refers to Sju |P and tu is the
corresponding offset.

DEFINITION 3.14. For a projected sequence S|P we define two
operations:

• original(S|P) = S; and

• prefix(S|P) = {st}, t = 1, . . . , km, where mk1,km(P, S)
is the earliest match.

in other words, original of a projection returns the whole sequence
S, while prefix of a projection returns the part of the sequence
preceding the projection.

3.2 The BIDE algorithm
BIDE is an efficient algorithm for finding frequent closed se-

quential patterns in sequential databases [39]. We extend this al-
gorithm to enforce the margin-closed constraints. In order to make
this paper self-contained we provide a detailed description of BIDE
using our own definitions.

BIDE is initially called with the full sequential database D, min-
imum support μ and an empty pattern P = ∅. It returns a list of
frequent closed sequential patterns. BIDE operates by recursively
extending patterns, and, while their frequency is above the mini-
mum support, checking closure properties of the extensions.

Consider a frequent pattern P = {pi},i = 1, . . . , n. There are
two ways to extend pattern P forward with item j:

• Appending the set pn+1 = {j} to P obtaining P ′ =
p1 . . . pnpn+1, called a forward-S(equence)-extension.

• Adding j to the last itemset of P : P ′ = p1 . . . p
′
n, with

p′n = pn ∪ j, assuming j /∈ pn, called a forward-I(tem)-
extension.

Similarly, a pattern can be extended backward

• Inserting the set px = {j} into P anywhere before the last
set obtaining P ′ = p1 . . . pipxpi+1 . . . pn, for some 0 ≤ i ≤
n, called a backward-S(et)-extension.

• Adding j to any set in P obtaining P ′ = p1 . . . p
′
i . . . pn,

with p′i = pi ∪ j, assuming j /∈ pn, 1 ≤ i ≤ n, called a
backward-I(tem)-extension.

According to a Theorem 3 of [40], a pattern is closed if
there exists no forward-S-extension item, forward-I-extension item,
backward-S-extension item, nor backward-I-extension item with
the same support.

Furthermore, if there is a backwards extension item, then the
resulting extension and all of its future extension are explored in a
different branch of recursion, meaning that it can be pruned from
current analysis. These insights are combined in BIDE, leading to

Algorithm 1 BIDE Algorithm

Require: Sequential Pattern P = {pi}, Projected Database D|P ,
minimum support μ

1: F - set of frequent closed patterns
2: l = |P |
3: Ls = sStepFrequentItems(P,D|P, μ);
4: Li = iStepFrequentItems(P,D|P, μ);
5: if !(frequencyCheck(Ls, P) || frequencyCheck(Li, P))

then
6: if backscan(P ′, D′, true) then
7: F = F ∪ P
8: end if
9: end if

10: for itemset p ∈ Ls do
11: P ′ = p1, .., pl, p
12: if backscan(P ′, D|P ′, false) then
13: F = F ∪ bide(P ′, D′, μ);
14: end if
15: end for
16: for itemset p ∈ Li do
17: P ′ = p1, .., pl−1, pl ∪ p
18: if backscan(P ′, D|P ′, false) then
19: F = F ∪ bide(P ′, D′, μ);
20: end if
21: end for
22: return F

Algorithm 2 FrequencyCheck

Require: Pattern P , HashMap M of forward (I or S) extension
items with their supports

1: for i ∈ M do
2: if M(i)=support(P) then
3: return true
4: end if
5: end for
6: return false

a very memory-efficient algorithm, because the patterns found do
not need to be kept in memory while the algorithm is running.

Specifically, consider pseudo-code for BIDE (Algorithm 1). In
Lines 3-4 items that can be used in forward extension of the current
pattern are found. If there is no forward extension with the same
support (Line 5), the backward closure is checked (Line 6) using
function backScan. If the pattern is also backwards-closed, it can
be added to the set of closed frequent patterns (Line 7).

Then, we check every item in forward S and I extensions (in the
two for-loops) to see whether it is explored in a different branch
of recursion, again via backScan function (Lines 12 and 18). If
not, then we project the database on the extension and call BIDE
recursively on the extension and the new projected database.

Pseudo-code for sStepFrequentItems and iStepFrequentItems
is shown in Algorithms 3 and 4. Algorithm 2 shows the Frequen-
cyCheck function. These functions are rather straightforward.

It remains to discuss the backScan function (Algorithm 5). The
backScan function has two uses. The first time it is called in func-
tion BIDE, closure check flag is set to true (Line 6). Then backScan
returns true if and only if pattern P is backwards closed, i.e. if there
is no backwards extension with the same support. This is Case
I. The other calls from BIDE are with closure check set to false.
In these situations backScan needs to check if a pattern extension
is backwards closed in its projected database i.e. that it can’t be

47

Algorithm 3 Finding forward-S-expansion Candidates

Require: Sequential Pattern P = {pi}; Projected Database D|P ,
minimum support μ

1: Initialize Hash Map M
2: for i = 1, . . . , |D|P | do
3: I = ∅
4: for j = 1, . . . , |si| do
5: I = I ∪ sij
6: end for
7: for item ∈ I do
8: M(i) = M(i) + 1
9: end for

10: end for
11: for i ∈ M do
12: if M(i) < μ then
13: Delete M(i)
14: end if
15: end for
16: return M

Algorithm 4 Finding forward-I-expansion Candidates

Require: Sequential Pattern P = {pi}; Projected Database D|P ,
μ

1: Initialize Hash Map M
2: Let l = |P |
3: for i = 1, . . . , |D|P | do
4: I = ∅
5: for j = 1, . . . , |si| do
6: if pl ∈ si then
7: I = I ∪ sij
8: end if
9: end for

10: for item i ∈ I do
11: M(i) = M(i) + 1
12: end for
13: end for
14: for i ∈ M do
15: if M(i) < μ then
16: Delete M(i)
17: end if
18: end for
19: return M

reached in a different way, via a different recursion branch. This is
Case II.

In order to check for backward extensions of a pattern P , we
need to know which parts of sequences in D need to be looked at.
If P has a backward-S-extension item t between pi and pi + 1, it
means that in each sequence S ∈ D matching P there is a particu-
lar match mk1,km(P, S), such that t occurs between ski and ski+1 .
In order to check for an existence of such an item, we can find the
earliest and the latest matches mk1,km(P, S) and mj1,jm(P, S),
and examine the itemsets ski+1, . . . , sji+1−1. In other words, we
check the itemsets between the earliest occurrence in a match of
pi and the latest occurrence in a match of pi+1. Similarly, we
can check for existence of a backward-I-extension item t by look-
ing at all possible occurrences of t together with pi, starting from
earliest and ending with latest match occurrences of pi. Function
FindMaximumGaps (Algorithm 6) is used exactly for finding
and storing the earliest and latest indices of consecutive itemsets
of pattern P in a match m(P, S). Finding of the latest match is

Algorithm 5 BackScan Function. If closedCheck is true, checks
if P is closed. If closedCheck is false, checks if P is examined in
a different branch of the recursion.

Require: Sequential Pattern P = {pi}, Projected Database D|P ,
μ,closedCheck

1: Initialize a 3D integer array G (for gaps)
2: for i = 1, . . . , |D| do
3: if closedCheck then
4: G[i] = FindMaximumGaps(P, original(Si))
5: else
6: G[i] = FindMaximumGaps(P, prefix(Si))
7: end if
8: end for
9: if BackwardIExpansionCheck(P,D|P, μ, closedCheck,G)

then
10: if BackwardSExpansionCheck(P,D|P, μ, closedCheck,G)

then
11: return true
12: end if
13: end if
14: return false

Algorithm 6 FindMaximumGaps

Require: Sequential Pattern P = {pi}; Event Sequence S
1: Initialize |P | × 2 integer array G
2: if ∃mi1,im(P, S) then
3: G[0][0] = 0
4: for j = 1, . . . , |P | do
5: Set G[j][0] = ij
6: end for
7: Compute Sr - reverse of S
8: Compute P r - reverse of P
9: Compute mi1,im(P r, Sr)

10: for j = 1, . . . , |P r| do
11: Set G[|P | − j][1] = |S| − ij
12: end for
13: end if
14: return G

most efficiently found by searching for a reverse of P in a reverse
of sequence S, and transforming the indices appropriately.

We can now discuss the two Cases mentioned above. In Case
I closure check flag is set to true. Since we want to check if pat-
tern P is closed, we need to fully examine all sequences in D|P
for potential extensions. Therefore, function FindMaximumGaps
is called on original sequences in D|P , not on the projections. In
Case II, we only care if there is a backward extension in order to
prune the current pattern. Therefore, when closedCheck is false,
FindMaximumGaps is called on prefixes of sequences in D|P .

Once array G is computed, we check for I-expansions and for
S-expansions (Algorithms 7 and 8). Consider BackwardIExpan-
sionCheck. We want to detect if an item can be inserted into any
itemset of P , while maintaining the same support. Therefore, for
each position in P , we examine all sequences in D|P , in the in-
tervals specified by array G. If closedCheck is true, we look at
the full sequence S, otherwise we look at the prefix of S|P . The
’end’ indices need to be computed differently for the two cases, be-
cause when closedCheck is false, the last occurrence of the last
itemset of P is also the first potential point for forward expansion
and does not need to be considered, but when closedCheck is true,

48

we check for closedness of P and all potential expansion locations
need to be examined.

For each sj , if pi ∈ sj , we add all items in sj to set C, except
for items already in pi. After processing a sequence, we update fre-
quency counts of items in C that are stored a hash map M , and keep
track of the maximum frequency value. Once we have processed all
sequences for a particular pi, we check if the maximum frequency
is equal to support of P (support(P) = |D|P |). If so, that means
that there is some backward-I-expansion item for P , and therefore
P is not closed and, there is another recursion branch that will ex-
amine this expansion, so BackwardIExpansionCheck returns false.
If maximum frequency is below support of P , BackwardIExpan-
sionCheck return true.

BackwardSExpansionCheck operates similarly.

Algorithm 7 BackwardIExpansionCheck

Require: Pattern P , Projected Database D|P , μ,closedCheck,
gap array G

1: for i = 1, . . . , |P | do
2: Initialize Hash Map M
3: for j = 1, . . . , |D| do
4: start = G[j][i][0] + 1
5: if closedCheck then
6: end = G[j][i][1]
7: S′ = original(Sj)
8: else
9: end = G[j][i][1]− 1

10: S′ = prefix(Sj)
11: end if
12: C = ∅
13: for k = start, . . . , end do
14: if Pi ∈ S′

k then
15: C = C ∪ S′

k

16: end if
17: end for
18: C = C − Pi

19: max = 0
20: for si ∈ C do
21: M(si) = M(si) + 1
22: if M(si) > max then
23: max = M(si)
24: end if
25: end for
26: end for
27: if max = support(P) then
28: return false;
29: end if
30: end for
31: return true

3.3 The BIDE-Margin algorithm
We now describe the changes required to enforce margin-

closedness in BIDE leading to the BIDE-Margin algorithm. The
flag marginCheck is used in the backScan function instead of
closedCheck and there is the additional margin parameter α.
There are three changes to the functions described in the follow-
ing sections.

When Forward Expansion is considered, rather than checking if
there are items with the same support as the current pattern, one
instead checks for presence of items that are within margin α of the
pattern’s support. The function FrequencyCheck for BIDE-Margin
is shown in Algorithm 9.

Algorithm 8 BackwardSExpansionCheck

Require: Pattern P , Projected Database D|P , μ,closedCheck,
gap array G

1: for i = 1, . . . , |P | do
2: Initialize Hash Map M
3: for j = 1, . . . , |D| do
4: start = G[j][i][0] + 1
5: end = G[j][i][1]− 1
6: if closedCheck then
7: S′ = original(Sj)
8: else
9: S′ = prefix(Sj)

10: end if
11: C = ∅
12: for k = start, . . . , end do
13: C = C ∪ S′

k

14: end for
15: max = 0
16: for si ∈ C do
17: M(si) = M(si) + 1
18: if M(si) > max then
19: max = M(si)
20: end if
21: end for
22: end for
23: if max = support(P) then
24: return false;
25: end if
26: end for
27: return true

Algorithm 9 FrequencyCheck for BIDE-Margin

Require: Pattern P , HashMap M of forward (I or S) extension
items with their supports, α

1: for i ∈ L do
2: if M(i) >= (1− α) ∗ support(P) then
3: return true
4: end if
5: end for
6: return false

The other two changes involve checking backward closure. We
need to check if there are any items that are margin-close to the
pattern, and if so then the pattern is not margin-closed. This leads
to changes to BackwardIExpansionCheck and BackwardSExpan-
sionCheck functions. Algorithms 10 and 11 respectively show how
these algorithms need to be modified for BIDE-Margin. The pa-
rameter marginCheck replaces closedCheck, and is used simi-
larly, except for additions in Lines 25-29 and Lines 21-25. When
marginCheck is true we check if pattern is margin-closed, and
therefore if there is an item with frequency above μ and within mar-
gin of the support of P , we know that P is not margin-closed. Note
that when marginCheck is false, this check should not be per-
formed - we cannot disregard the recursion branches going from
the current pattern unless there is a backward extension with ex-
actly the same support.

3.4 Computational Efficiency
The BIDE-Margin algorithm has the same complexity as BIDE,

since it still generates all frequent sequential patterns, in exactly
the same fashion. However, unlike BIDE it searches for margin-

49

Algorithm 10 BackwardIExpansionCheck for BIDE-Margin

Require: P , D|P , μ,marginCheck, G, α
1: for i = 1, . . . , |P | do
2: Initialize Hash Map M
3: for j = 1, . . . , |D| do
4: start = G[j][i][0] + 1
5: if marginCheck then
6: end = G[j][i][1]
7: S′ = original(Sj)
8: else
9: end = G[j][i][1]− 1

10: S′ = prefix(Sj)
11: end if
12: C = ∅
13: for k = start, . . . , end do
14: if Pi ∈ S′

k then
15: C = C ∪ S′

k

16: end if
17: end for
18: C = C − Pi

19: max = 0
20: for si ∈ C do
21: M(si) = M(si) + 1
22: if M(si) > max then
23: max = M(si)
24: end if
25: if marginCheck then
26: if max ≥ (1− α) ∗ |D|P | AND max ≥ μ then
27: return false
28: end if
29: end if
30: end for
31: end for
32: if max = |D| then
33: return false;
34: end if
35: end for
36: return true

closed, rather than just closed, patterns and therefore it will need to
check closeness less frequently. In other words, due to a "looser"
frequency check used by BIDE-Margin (Algorithm 9), the call
to backscan algorithm in Line 6 of Algorithm 1 will occur less
frequently in BIDE-Margin than in BIDE. Thus, while the over-
all algorithm complexity is the same, BIDE-Margin may perform
slightly faster. The extent of this depends on the nature of the data
and the value of margin specified.

We would also like to note that BIDE-Margin is significantly
more efficient than a brute force post-processing of BIDE results
would be. If N is the number of patterns produced by BIDE for a
particular value of support, the postprocessing would require O(N)
memory and O(N2) time to order the patterns by their support and
then to check for each pattern P if it is margin-closed.

4. EXPERIMENTS
We performed experiments on real life sequential data sets to

compare BIDE and BIDE-Margin in two ways: 1) The number of
patterns produced. By definition BIDE-Margin with α > 0 pro-
duces the same or less patterns than BIDE. The goal of the exper-
iment is to quantify the extent of this reduction on real life data.
2) Predictiveness of patterns found: We compare the classification

Algorithm 11 BackwardSExpansionCheck for BIDE-Margin

Require: P , D|P , μ,marginCheck, G, α
1: for i = 1, . . . , |P | do
2: Initialize Hash Map M
3: for j = 1, . . . , |D| do
4: start = G[j][i][0] + 1
5: end = G[j][i][1]− 1
6: if marginCheck then
7: S′ = original(Sj)
8: else
9: S′ = prefix(Sj)

10: end if
11: C = ∅
12: for k = start, . . . , end do
13: C = C ∪ S′

k

14: end for
15: max = 0
16: for si ∈ C do
17: M(si) = M(si) + 1
18: if M(si) > max then
19: max = M(si)
20: end if
21: if marginCheck then
22: if max ≥ (1− α) ∗ |D|P | AND max ≥ μ then
23: return false
24: end if
25: end if
26: end for
27: end for
28: if max = |D| then
29: return false;
30: end if
31: end for
32: return true

performance of the sets of patterns when used as features in SVM
training. Since BIDE-Margin suppresses only features that are very
similar in frequency to reported features, we expect to see only mi-
nor performance decrease, if any. With SVM being a classifier that
can deal with high dimensional data and redundancy among the
features this is a tough test.

We did not perform run-time comparisons between BIDE and
BIDE-Margin, since the differences are expected to be small. Sim-
ilarly, the scalability with the number of sequences in the database
is inherited directly from BIDE.

4.1 Data
We performed experiments on six interval datasets, previously

used in [29], summarized in Table 1. While technically databases
of intervals, they can be interpreted as sequential databases by treat-
ing start and end boundaries of an interval as separate events [42].
Specifically, each symbolic interval, a triple (ts, te, σ) with event
σ ∈ Σ and time stamps ts ≤ te, is converted into two symbolic
time points (ts, σ

+) and (te, σ
−), and then all time points with the

same time stamp are aggregated into itemsets, resulting in a stan-
dard event sequence as in Definition 3.1. Further details are given
in [29].

The advantage of this collection is that class labels are available
for each sequence that allows an automated evaluation of patterns
using a classifier, while the categorical sequential data available in
the UCI Machine Learning Repository [3] is largely unlabeled such
as web log data.

50

Data Intervals Labels Sequences Classes

ASL-BU 18250 154 441 7
Auslan2 900 12 200 10
Blocks 1207 8 210 8
Context 12916 54 240 5
Pioneer 4883 92 160 3
Skating 18953 41 530 6/7

Table 1: Interval data: Seven databases consisting of many se-
quences of labeled intervals with class labels for each sequence.

ASL-BU1 The intervals are transcriptions from videos of Amer-
ican Sign Language expressions provided by Boston University
[30]. It consists of observation interval sequences with labels such
as head mvmt: nod rapid or shoulders forward that belong to one
of 7 classes like yes-no question or rhetorical question.

Auslan2 The intervals were derived from the high quality Aus-
tralian Sign Language dataset in the UCI repository [3] donated by
Kadous [19]. The x,y,z dimensions were discretized using Persist
with 2 bins, 5 dimensions representing the fingers were discretized
into 2 bins using the median as the divider. Each sequence repre-
sents a word like girl or right.

Blocks2 The intervals describe visual primitives obtained from
videos of a human hand stacking colored blocks provided by [15].
The interval labels describe which blocks touch and the actions of
the hand (contacts blue red, attached hand red). Each sequence
represents one of 8 different scenarios from atomic actions (pick-
up) to complete scenarios (assemble).

Context3 The intervals were derived from categoric and numeric
data describing the context of a mobile device carried by humans
in different situations [23]. Numeric sensors were discretized using
2-3 bins chosen manually based on exploratory data analysis. Each
sequence represents one of five scenarios such as street or meeting.

Pioneer The intervals were derived from the Pioneer-1 datasets
in the UCI repository [3]. The numerical time series were dis-
cretized into 2-4 bins by choosing thresholds manually based on
exploratory data analysis. Each sequence describes one of three
scenarios: gripper, move, turn.

Skating The intervals were derived from 14 dimensional numer-
ical time series describing muscle activity and leg position of 6
professional In-Line Speed Skaters during controlled tests at 7 dif-
ferent speeds on a treadmill [27]. The time series were discretized
into 2-3 bins using Persist and manually chosen thresholds. Each
sequence represents a complete movement cycle and is labeled by
skater or speed.

4.2 Numerosity
By construction, the number of patterns produced by BIDE-

Margin is always less than or equal to that produced by BIDE. Fig-
ure 1 shows the number of patterns (on a log10 scale) found by
these methods using different support thresholds and margin val-
ues. For all datasets except ASL-BU, BIDE-Margin produces sig-
nificantly fewer patterns. The reduction is strongest for the Context
and Skating data and for Auslan2 for large minimum supports.

4.3 Predictiveness
Patterns obtained by unsupervised mining can be used for knowl-

edge discovery by ranking and analyzing them directly, for gener-

1http://www.bu.edu/asllrp/
2ftp://ftp.ecn.purdue.edu/qobi/ama.tar.Z
3http://www.cis.hut.fi/jhimberg/contextdata/
index.shtml

ation of temporal association rules [18], or as features in predictive
models [11]. We analyzed the predictiveness of the patterns by es-
timating classifier performance with each set of patterns.

In our experiments we have used the Spider Toolbox for Matlab4

As classifier, we focused on Support Vector Machines. We have
also experimented with decision trees and random forests, obtain-
ing qualitatively similar results.

Once patterns were generated, for a particular value of support
and margin, we have performed 10-fold cross-validation with linear
SVM, setting parameter C in turn to 2k, k = −10,−9, . . . , 9, 10.
The best value over all values of C is reported. Note, that this is
done purely for the purpose of comparing the properties of two un-
supervised pattern mining techniques, hence we did not interleave
the pattern mining with the cross validation, as would be needed if
the goal were to train a classifier with good generalization perfor-
mance.

The results are shown in Figure 2. The y-axis is the lowest clas-
sification error, while the x-axis is the minimum support. The re-
sults with different margin values are shown as different lines. Ex-
amination of these results suggests that using margin 0.05 or 0.1
barely affects the classification error rate. Margin of 0.2 does lead
to noticeably worse results on Pioneer dataset, and on Auslan2 with
support 20, but not on the other datasets. The differences in perfor-
mance tend to become smaller as support increases and the number
of patterns decreases.

Figure 3 shows results obtained with J48, using the default set-
tings. The results are qualitatively similar to those obtained with
SVM, i.e. classification error does not increase for small values of
the margin. Results with random forests are omitted due to space
constraints.

5. CONCLUSION
We presented a new constraint for reducing the output of sequen-

tial pattern mining and an efficient algorithm for mining such pat-
terns. We have demonstrated that the number of margin-closed pat-
terns can be a lot smaller than that of closed patterns, but that these
patterns are just as useful, as evidenced by performance of classi-
fiers built using these patterns.

Using data mining in real life systems often requires the ana-
lyst to understand and trust the reported results to take appropriate
action. We believe that reporting of exact patterns with exact fre-
quency and favoring longer patterns while pruning similar shorter
patterns are all advantageous for interpretation of mining results by
an analyst. For some domains, however, error tolerance [45] may
be more important than interpretability.

Mining closed sequential patterns is an important task in tempo-
ral data mining from time point and time interval data [28] and it is
a substep in the process of mining partial orders [9]. In future work,
we intend to conduct an experimental evaluation of the run-time of
BIDE-Margin compared with BIDE using both actual pattern min-
ing time and the time needed by follow up data mining tasks such
as classification or grouping of sequences into partial orders.

6. REFERENCES
[1] F. Afrati, A. Gionis, and H. Mannila. Approximating a

collection of frequent sets. In Proc. 10th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages
12–19. ACM Press, 2004.

4http://www.kyb.mpg.de/bs/people/spider/
main.html

51

10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)

ASL−BU

margin 0
margin 0.05
margin 0.1
margin 0.2

(a) ASL-BU

0 5 10 15 20 25 30 35 40

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)

Auslan2

margin 0
margin 0.05
margin 0.1
margin 0.2

(b) Auslan2

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

3

3.5

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)

Blocks

margin 0
margin 0.05
margin 0.1
margin 0.2

(c) Blocks

165 170 175 180 185 190 195
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)

Context

margin 0
margin 0.05
margin 0.1
margin 0.2

(d) Context

10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)
Pioneer

margin 0
margin 0.05
margin 0.1
margin 0.2

(e) Pioneer

390 400 410 420 430 440 450 460 470 480

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Minimum support

lo
g(

N
um

be
r o

f p
at

te
rn

s)

Skating

margin 0
margin 0.05
margin 0.1
margin 0.2

(f) Skating

Figure 1: Comparison of the number of patterns (log10 scale) for different minimum support thresholds and margin values.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. In Proc. IEEE ICDE, pages 3–14. IEEE
Press, 1995.

[3] A. Asuncion and D.J. Newman. UCI Machine Learning
Repository. University of California, Irvine http://www.
ics.uci.edu/~mlearn/MLRepository.html.

[4] F. Bonchi and C. Lucchese. On condensed representations of
constrained frequent patterns. Knowl. Inf. Syst.,
9(2):180–201, 2006.

[5] J.-F. Boulicaut and A. Bykowski. Frequent closures as a
concise representation for binary data mining. In Proc.
Pacific-Asia Conf. on Knowledge Discovery and Data
Mining, pages 62–73, 2000.

[6] Björn Bringmann and Albrecht Zimmermann. One in a
million: picking the right patterns. Knowledge and
Information Systems, 18(1):61–81, 2008.

[7] T. Calders and B. Goethals. Non-derivable itemset mining.
Data Mining and Knowledge Discovery, 14(1):171–206,
2007.

[8] T. Calders, C. Rigotti, and J.-F. Boulicaut. A survey on
condensed representations for frequent sets. In
Constraint-Based Mining and Inductive Databases, pages
64–80, 2006.

[9] G. Casas-Garriga. Summarizing sequential data with closed
partial orders. In Proc. of the 5th SIAM Intl. Conf. on Data
Mining (SDM), pages 380–391. SIAM, 2005.

[10] Lei Chang, Tengjiao Wang, Dongqing Yang, Hua Luan, and

Shiwei Tang. Efficient algorithms for incremental
maintenance of closed sequential patterns in large databases.
Data Knowl. Eng., 68(1):68–106, 2009.

[11] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative
frequent pattern analysis for effective classification. In Proc.
IEEE ICDE, 2007.

[12] J. Cheng, Y. Ke, and W. Ng. δ-tolerance closed frequent
itemsets. In Proc. 6th IEEE Int. Conf. on Data Mining, pages
139–148. IEEE Press, 2006.

[13] L. De Raedt, T. Guns, and S. Nijssen. Constraint
programming for itemset mining. In Proc. 14th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 204–212. ACM, 2008.

[14] G. Dong and J. Pei. Sequence Data Mining. Morgan
Kaufmann, 2007.

[15] A. Fern. Learning Models and Formulas of a Temporal Event
Logic. PhD thesis, Purdue University, West Lafayette, IN,
USA, 2004.

[16] R. Gupta, G. Fang, B. Field, M. Steinbach, and V. Kumar.
Quantitative evaluation of approximate frequent pattern
mining algorithms. In Proc. 14th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, pages 301–309.
ACM, 2008.

[17] J. Han and M. Kamber. Data Mining - Concepts and
Techniques, 2nd edition. Morgan Kaufmann, 2006.

[18] Frank Höppner. Discovery of temporal patterns - learning
rules about the qualitative behaviour of time series. In Proc.

52

10 20 30 40 50 60 70 80 90
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

ASL−BU

margin 0
margin 0.05
margin 0.1
margin 0.2

(a) ASL-BU

0 5 10 15 20 25 30 35 40
0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Auslan2

margin 0
margin 0.05
margin 0.1
margin 0.2

(b) Auslan2

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Blocks

margin 0
margin 0.05
margin 0.1
margin 0.2

(c) Blocks

165 170 175 180 185 190 195
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Context

margin 0
margin 0.05
margin 0.1
margin 0.2

(d) Context

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Pioneer

margin 0
margin 0.05
margin 0.1
margin 0.2

(e) Pioneer

390 400 410 420 430 440 450 460 470 480
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Skating

margin 0
margin 0.05
margin 0.1
margin 0.2

(f) Skating

Figure 2: SVM classification errors achieved with different minimum support thresholds and margin values.

of the 5th European Conf. on Principles of Data Mining and
Knowledge Discovery (PKDD), pages 192–203. Springer,
2001.

[19] M. W. Kadous. Temporal Classification: Extending the
Classification Paradigm to Multivariate Time Series. PhD
thesis, University of New South Wales, 2002.

[20] Arno J. Knobbe and Eric K. Y. Ho. Pattern teams. In PKDD,
pages 577–584, 2006.

[21] C. Lucchese, S. Orlando, and R. Perego. Fast and memory
efficient mining of frequent closed itemsets. IEEE TKDE,
18(1):21–36, 2006.

[22] H. Mannila, H. Toivonen, and I. Verkamo. Discovery of
frequent episodes in event sequences. In Proc. of the 1st Intl.
Conf. on Knowledge Discovery and Data Mining (KDD),
pages 210–215. AAAI Press, 1995.

[23] J. Mäntyjärvi, J. Himberg, P. Kangas, U. Tuomela, and
P. Huuskonen. Sensor signal data set for exploring context
recognition of mobile devices. In Proc. of 2nd Int. Conf. on
Pervasive Computing (PERVASIVE 2004), pages 18–23.
Springer, 2004.

[24] Fabian Moerchen, Michael Thies, and Alfred Ultsch.
Efficient mining of all margin-closed itemsets with
applications in temporal knowledge discovery and
classification by compression. Under review in Knowledge
and Information Systems.

[25] F. Mörchen. Algorithms for time series knowledge mining.
In Proc. 12th ACM SIGKDD Int. Conf. on Knowledge

Discovery and Data Mining, pages 668–673. ACM Press,
2006.

[26] F. Mörchen. Time Series Knowledge Mining. PhD thesis,
Philipps-University Marburg, Germany, 2006.

[27] F. Mörchen and A. Ultsch. Efficient mining of
understandable patterns from multivariate interval time
series. Data Min. Knowl. Discov., 2007.

[28] Fabian Mörchen. Unsupervised pattern mining from
symbolic temporal data. SIGKDD Explor. Newsl.,
9(1):41–55, 2007.

[29] Fabian Mörchen and Dmitriy Fradkin. Robust mining of time
intervals with semi-interval partial order patterns. In
Proceedings of SIAM Conference on Data Mining (SDM),
Columbus, Ohio, USA, 2010.

[30] P. Papaterou, G. Kollios, S. Sclaroff, and D. Gunopoulos.
Discovering frequent arrangements of temporal intervals. In
Proc. of the 5th IEEE Intl. Conf. on Data Mining (ICDM),
pages 354–361, 2005.

[31] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi
Lakhal. Discovering frequent closed itemsets for association
rules. In Proceeding of the 7th Intl. Conf. on Database
Theory (ICDT), pages 398–416. Springer, 1999.

[32] J. Pei, G. Dong, W. Zou, and J. Han. Mining condensed
frequent pattern bases. Knowledge and Information Systems,
6(5):570–594, 2004.

[33] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent

53

10 20 30 40 50 60 70 80 90
0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

ASL−BU

margin 0
margin 0.05
margin 0.1
margin 0.2

(a) ASL-BU

0 5 10 15 20 25 30 35 40
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Auslan2

margin 0
margin 0.05
margin 0.1
margin 0.2

(b) Auslan2

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Blocks

margin 0
margin 0.05
margin 0.1
margin 0.2

(c) Blocks

165 170 175 180 185 190 195
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Context

margin 0
margin 0.05
margin 0.1
margin 0.2

(d) Context

10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Pioneer

margin 0
margin 0.05
margin 0.1
margin 0.2

(e) Pioneer

390 400 410 420 430 440 450 460 470 480

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Minimum support

C
la

ss
ifi

ca
tio

n
E

rr
or

Skating

margin 0
margin 0.05
margin 0.1
margin 0.2

(f) Skating

Figure 3: J48 classification errors achieved with different minimum support thresholds and margin values.

itemsets with convertible constraints. In Proc. IEEE Intl.
Conf. on Data Engineering. IEEE, 2001.

[34] Jian Pei, Haixun Wang, Jian Liu, Ke Wang, Jianyong Wang,
and Philip S. Yu. Discovering frequent closed partial orders
from strings. IEEE TKDE, 18(11):1467–1481, 2006.

[35] Marc Plantevit and Bruno Crémilleux. Condensed
representation of sequential patterns according to
frequency-based measures. In IDA ’09: Proceedings of the
8th International Symposium on Intelligent Data Analysis,
pages 155–166, Berlin, Heidelberg, 2009. Springer-Verlag.

[36] C. Raïssi, T. Calders, and P. Poncelet. Mining conjunctive
sequential patterns. Data Min. Knowl. Discov., 17(1):77–93,
2008.

[37] N. Tatti and J. Vreeken. Finding good itemsets by packing
data. In Proc. 8th IEEE Int. Conf. on Data Mining, 2008.

[38] M. van Leeuwen, J. Vreeken, and A. Siebes. Compression
picks item sets that matter. In Proc. European Conf. on
Principles and Practice of Knowledge Discovery in
Databases, pages 585–592, 2006.

[39] J. Wang and J. Han. BIDE: Efficient mining of frequent
closed sequences. In Proc. ICDE, pages 79–90. IEEE Press,
2004.

[40] Jianyong Wang, Jiawei Han, and Chun Li. Frequent closed
sequence mining without candidate maintenance. IEEE
Transactions on Knowledge and Data Engineering,
19(8):1042–1056, 2007.

[41] Tao Wang. Compressing the set of frequent sequential

patterns. In FSKD ’08: Proceedings of the 2008 Fifth
International Conference on Fuzzy Systems and Knowledge
Discovery, pages 330–334, Washington, DC, USA, 2008.
IEEE Computer Society.

[42] Shin-Yu Wu and Yen-Liang Chen. Mining nonambiguous
temporal patterns for interval-based events. IEEE TKDE,
19(6):742–758, 2007.

[43] M.J. Zaki. Mining non-redundant association rules. Data
Mining and Knowledge Discovery, 9(3):223–248, 2004.

[44] Q. Zhao and S.S. Bhowmick. Sequential pattern mining: A
survey. Technical report, Nanyang Technichal University,
Singapore, 2003.

[45] Feida Zhu, Xifeng Yan, Jiawei Han, and Philip S. Yu.
Efficient discovery of frequent approximate sequential
patterns. In ICDM ’07: Proceedings of the Seventh IEEE
International Conference on Data Mining, pages 751–756,
Washington, DC, USA, 2007. IEEE Computer Society.

54

Block Interaction: A Generative Summarization Scheme
for Frequent Patterns

Ruoming Jin1 Yang Xiang2 Hui Hong1 Kun Huang2

1Department of Computer Science, Kent State University, Kent, OH 44242
{jin, hhong}@cs.kent.edu

2Department of Biomedical Informatics, OSUCCC Biomedical Informatics Shared Resource,
The Ohio State University, Columbus, OH 43210

{yxiang,khuang@bmi.osu.edu}

ABSTRACT

Frequent pattern mining is an essential tool in the data miner’s tool-
box, with data applications running the gamut from itemsets, se-
quences, trees, to graphs and topological structures. Despite its
importance, a major issue has clouded the frequent pattern mining
methodology: the number of frequent patterns can easily become
too large to be analyzed and used. Though many efforts have tried
to tackle this issue, it remains to be an open problem. In this paper,
we propose a novel block-interaction model to answer this call.
This model can help summarize a collection of frequent itemsets
and provide accurate support information using only a small num-
ber of frequent itemsets. At the heart of our approach is a set of core
blocks, each of which is the Cartesian product of a frequent itemset
and its support transactions. Those core blocks interact with each
other through two basic operators (horizontal union and vertical
union) to form the complexity of frequent patterns. Each frequent
itemset can be expressed and its frequency can be accurately re-
covered through the combination of these core blocks. This is also
the first complete generative model for describing the formation of
frequent patterns. Specifically, we relate the problem of finding a
minimal block-interaction model to a generalized set-cover prob-
lem, referred to as the graph set cover (GSC) problem. We develop
an efficient algorithm based on GSC to discover the core blocks. A
detailed experimental evaluation demonstrates the effectiveness of
our approach.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—Data Min-

ing

General Terms

Algorithms, Theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

Keywords

block interaction, set cover with pairs, generative model, frequent
itemsets, pattern summarization

1. INTRODUCTION
Frequent pattern mining is an essential tool in the data miner’s

toolbox, with data applications running the gamut from itemsets,
sequences, trees, to graphs and topological structures [2, 26, 3, 32,
4]. Frequent pattern mining not only works by itself to discover
hidden patterns from relational or structured data, but also serves
as a basis for other data mining techniques, including association
rules, clustering, classification, indexing, etc. Over the years, the
data mining community has achieved great success in developing
efficient and scalable mining algorithms to discover frequent pat-
terns (See [13] for a state-of-the-art review).

However, a major issue has clouded the frequent pattern mining
methodology from the very beginning: the number of frequent pat-
terns can easily become too large to be analyzed and used. Many
efforts have been made in attempting to reduce the number of fre-
quent patterns, especially for itemsets (which can be generalized to
other pattern types). An early reduction approach considered how
to utilize “constraints” to filter out non-essential itemsets. Well-
known examples include maximal frequent patterns [19], closed
frequent patterns [21], non-derivable itemsets [9], and δ-cluster no-
tation [29]. A weakness of this approach is that they either cannot
recover the frequency of individual frequent itemsets (like maxi-
mal frequent patterns), or can still produce a very large number
of patterns. Another approach, which includes top-k frequent pat-
terns [14], top-k redundancy-aware patterns [28], and error-tolerant
patterns [31], tries to rank the importance of individual patterns, or
to revise the frequency concept to reduce the number of frequent
patterns. However, these methods generally do not provide a good
representation of the collection of frequent patterns.

The most recent approach is referred to as pattern summariza-
tion, which aims to offer a global view of the whole collection of
frequent itemsets. In [1], the authors propose to use K itemsets as
a concise representation to approximately cover the majority of the
frequent itemsets. Typically, those itemsets are either maximal fre-
quent itemsets or close to being maximal, with the condition that
most of their subsets are frequent (subject to false positive con-
straint). A key open question mentioned in this work is how to
derive the support information for an frequent itemset from such
summarization. Several works have applied probabilistic inference
to restore or browse the frequency of frequent itemsets [16, 30, 25,

55

22]. However, contrary to the original goal of [1], these works do
not directly contribute to the reduction of frequent patterns.

Can we summarize a collection of frequent itemsets and provide

accurate support information using only a small number of frequent

itemsets? In this paper, we provide a novel block-interaction model
to answer this call. At the heart of our approach is a set of core
blocks, also referred to as hyperrectangles [27], or tiles [11, 12],
each of which is the Cartesian product of a frequent itemset and
its support transactions. Those core blocks interact with each other
through two basic operators (horizontal union and vertical union) to
form the complexity of frequent patterns. Each frequent itemset can
be expressed and its frequency can be accurately recovered through
the combination of these core blocks. This is the first complete gen-
erative model for describing the formation of frequent patterns. An
additional benefit is that this model also provides a simple expla-
nation of each frequent itemset based on a small set of core blocks
and two basic operators. Finally, this generative model naturally
reduces the entire collection of frequent itemsets to a very small
core set. Note that in [18], we developed an approach to provide
a generative view of an entire collection of itemsets. However, that
model, similar to [1], could not recover support information for an
individual itemset. Besides, the optimization goal of [18] is not to
reduce the number of frequent itemsets to a small core set, but to
minimize the representation or storage cost of maximal itemsets.

The contributions of this paper are as follows.

1. We develop the first generative model to describe the forma-
tion of frequent itemsets. This model not only reduces the
entire collection of frequent itemsets to a small number of
core patterns, but also it can express each frequent itemset
and recover its frequency.

2. We relate the problem of finding a small set of core patterns
to a generalized set-cover problem, referred to as the Graph
Set Cover (GSC) problem. We develop an efficient algorithm
utilizing GSC to compute the small set of core patterns.

3. We have performed a detailed experimental evaluation; our
experimental results demonstrate the effectiveness of our ap-
proach.

2. BLOCK-INTERACTION MODEL AND

PROBLEM DEFINITION
In this section, we formally introduce the block-interaction model

for a collection of frequent itemsets Fα with α being the minimum
support level.

Let the transaction database DB be represented as a binary ma-
trix, i.e., a cell (i, j) is 1 if a transaction i contains item j; otherwise
0. For convenience, we also denote the database DB as the set of
all cells which are 1, i.e., DB = {(i, j) : DB[i, j] = 1}. Let
the block B be the Cartesian product of a transaction set T and an
itemset I , i.e., B = T × I = {(i, j) : i ∈ T and j ∈ I}, such that
B ⊆ DB. In other words, each block is an all-one submatrix of the
binary matrix of DB. For a block B, we also denote T (B) as the
transaction set of B and I(B) as the itemset of B, i.e., T (B) = T

and I(B) = I for B = T × I .
The block-interaction model contains a set of core blocks and

two simple block operators, the block vertical union (�) and the
block horizontal union (�) operators. Those core blocks and op-
erators can provide a generative view of a collection of frequent
itemsets and derive a concise explanation for each itemset.
Core Blocks: Given a transaction database DB, the block-interaction
model contains a small set of core blocks, denoted as B = {B1, B2,
· · · , Bp}, where Bi is a block of transaction database DB.

Block Vertical Union (�): Given two blocks B1 = T1 × I1 and
B2 = T2 × I2, the block vertical union operator generates a new
block with the itemset being the intersection of two itemsets I1 ∩
I2 and the transaction set being the union of two transaction sets
T1 ∪ T2 (Figure 1(a)):

B1 � B2 = T1 × I1 � T2 × I2 = (T1 ∪ T2) × (I1 ∩ I2)

Block Horizontal Union (�): Given two blocks B1 = T1 × I1

and B2 = T2 × I2, the block horizontal union operator generates a
new block with the itemset being the union of two itemsets I1 ∪ I2

and the transaction set being the intersection of two transaction sets
T1 ∩ T2 (Figure 1(b)):

B1 � B2 = T1 × I1 � T2 × I2 = (T1 ∩ T2) × (I1 ∪ I2)

Figure 1: Block Union

Clearly, for any two blocks B1 and B2 of transaction database
DB, their vertical union (B1�B2) and horizontal union (B1�B2)
are also blocks of DB. It is also easy to observe the following prop-
erties of these two operators (the proof is omitted for simplicity).

LEMMA 1. Both operators satisfy the commutative, associate,

and distributive properties, i.e.,

B1 � B2 = B2 � B1, B1 � (B2 � B3) = (B1 � B2) � B3,

B1 � B2 = B2 � B1, B1 � (B2 � B3) = (B1 � B2) � B3,

B1 � (B2 � B3) = (B1 � B2) � (B1 � B3),
B1 � (B2 � B3) = (B1 � B2) � (B1 � B3)

Given the core blocks B and the two block operators, we can
recursively generate a large set of blocks. Formally, we introduce
the closure of B, denoted P(B), as the set of all blocks generated
by the combination of core blocks B using the two operators:
Block Closure of B, P(B): 1) for any block B ∈ B, B ∈ P(B);
2) If B1 ∈ P(B) and B2 ∈ P(B), then B1 � B2 ∈ P(B); 3) If
B1 ∈ P(B) and B2 ∈ P(B), then B1 � B2 ∈ P(B)).

Now, we relate the frequent itemset I ∈ Fα to the set of core
blocks B and its closure P . We define supp(I) to be the support of
itemset I in the transaction database DB.

DEFINITION 1. (Block Support) Given an itemset I , if a block

B in P(B) subsumes I , i.e.,I ⊆ I(B), and if |T (B)| ≥ (1 −
ǫ)supp(I), where ǫ is a user-preferred accuracy level for support

recovery, then we say I is supported or explained by block B,

denoted as B |= I . For a given set of frequent itemset Fα, and a

set of core blocks B, if any itemset I in Fα is supported by at least

one block B in the closure P of B, then we say that Fα is supported

or explained by B or P , denoted as B |= Fα or P |= Fα.

Given this, we can see that the block-interaction model provides
a generative view of any frequent itemset by utilizing the two op-
erators on top of a small set of core blocks. Indeed, each block in

56

the block closure can be written as an expression of core blocks
and block operators. However, the potential problem is that such
an expression may be too complex or too unnatural to provide ex-
planatory power. For instance, a straightforward but extreme inter-
action model would be to consider each single item-transaction pair
in the database as a core block, i.e., B = DB. Alternatively, we
could treat each single column (each item with all its support trans-
actions) as a core block. Clearly, these sets of core blocks neither
provide a satisfactory generative view of the collection of frequent
itemsets nor are able to concisely summarize them. The underlying
reason for such an issue is that the core blocks do not immediately
relate to the frequent itemsets and the block expression can be too
complex.

In order to derive a meaningful block-interaction model, we con-
sider constraining the complexity of each block expression for sup-
porting or explaining an itemset. Specifically, we introduce the
concepts of (2×2)-block support (read "two by two") and (2×2)-

block interaction model.

DEFINITION 2. ((2 × 2)-Block Support) Given an itemset I ,

if a block B in the block closure P supports I , i,e., B |= I , and if

this block can be expressed in the following format,

B = (B1 � B2) � (B3 � B4), (1)

where B1, B2, B3, B4 ∈ B are core blocks, then we say I is (2 ×
2)-block supported by B. If each itemset I in Fα is (2 × 2)-block

supported by B, then we say B is a (2×2)-block interaction model

for Fα.

Note that in our (2×2)-block support definition, the four blocks,
B1, B2, B3 and B4, are not necessarily different. In other words,
some or all may correspond to the same block. For instance, B1

and B2 can be the same: B1 = B2. Figure 2 illustrates the block
expression for the 2 × 2 block support (and interaction model).
Note that we could also define the 2 × 2 block support based on
the block expression (B1 � B2) � (B3 � B4). The methodology
developed in this paper can be naturally adopted for such a model
as well. Due to space limitation, we focus our discussion the first
model. In general, we may further relax the constraint to consider
more operators in the block expression. However, relaxation will
increase the expression complexity. The 2 × 2 model is the most
concise one which allows both operators to be utilized in the block
expression in a symmetric fashion.

Figure 2: 2 × 2 block interaction (B1 � B2) � (B3 � B4)

Given the (2× 2) block interaction model, our goal is to provide
a generative view of an entire collection of itemsets Fα using only
a small set of core blocks B.

DEFINITION 3. (Minimal (2 × 2)-Block Interaction Model)

Let the complexity of the (2×2)-block interaction model be defined

as the number of core blocks, |B|. Given a collection of frequent

itemset Fα, we seek the most concise (2 × 2)-block interaction

model to explain Fα, i.e.,

arg min
|B|

B |= Fα

3. THEORETICAL BASIS
In this section, we first study the NP-hardness of the minimal

(2 × 2)-block interaction model (Subsection 3.1) and then we in-
troduce a new variant of the set cover problem, referred to as the
graph set cover problem (GSC for short), which forms the basis
of our algorithm to identify the minimal (2 × 2)-block interaction
model (Subsection 3.2). In the following sections (Section 4 and
Section 5, we discuss how to transform our problem into GSC prob-
lem and how to solve it efficiently.

3.1 Hardness Results

THEOREM 1. Given a transaction database DB and a collec-

tion of frequent itemsets Fα, it is NP-hard to find a minimal (2×2)-

block interaction model.

Proof sketch of Theorem 1 can be found in our technical re-
port [17].

Figure 3: An example of GSC problem

3.2 Graph Set Cover Problem
In this subsection, we introduce a new variant of the set cover

problem, which is closely related to the minimal (2 × 2)-block
interaction model and is utilized in solving our problem.

DEFINITION 4. (Graph Set Cover (GSC) Problem) Let U be

the ground set and let G = (V, E) be a graph, where each vertex

and each edge is associated with a collection of elements in U : for

a vertex v, let S(v) be the elements associated with v ∈ V ; for an

edge (u, v), let S(u, v) be the elements associated with (u, v) ∈ E

(S(v), S(u, v) ⊆ U). Given a set of vertices Vs ⊆ V , let G[Vs] =
(Vs, Es) be the subgraph induced by vertices Vs, and let S(G[Vs])
be the elements covered by the induced subgraph G[Vs], i.e.,

S(G[Vs]) =
[

v∈Vs

S(v)
[

(u,v)∈Es

S(u, v). (2)

Given this, the GSC problem seeks the smallest number of vertices,

such that their induced subgraph can cover all the elements in the

ground set, i.e.,

arg min
|Vs|

S(G[Vs]) = U. (3)

57

Figure 3 shows an example of GSC, where the ground set U =
{1, 2, · · · , 10}, and both vertices and edges in the graphs associate
with a subset of U . The induced subgraph of vertices a, c, and d

can cover U and is the optimal solution of this GSC problem.
It is not hard to see that the GSC problem is a generalization of

the classical set cover problem [10]. Indeed, if we consider only
the vertices are assigned with elements and the edges are not, then,
this problem is a simple set cover problem. This also immediately
shows the NP-hardness of this problem.

THEOREM 2. The GSC problem is NP-hard.

This problem is more closely related to the recently proposed
set-cover-with-pairs problem [15].

DEFINITION 5. (Set-Cover-with-Pairs Problem) Let U be the
ground set and let S = {1, . . . , M} be a set of objects. For every
{i, j} ⊆ S, let C(i, j) be the collection of elements in U covered
by the pair {i, j}. The objective of the set cover with pairs (SCP)

problem is to find a subset S′ ⊆ S such that

C(S′) =
[

{i,j}⊆S′

C(i, j) = U

with a minimum number of objects.

Note that we consider each object in SCP and each vertex in the
GSC problem to be unweighted. Both can be easily reformulated
as weighted versions but that is beyond scope of this work. It is
easy to see that the SCP problem is also a special case of the GSC
problem. Here, the input of SCP is a complete graph where each
edge associates with a subset of the ground set U (not vertices). As
demonstrated in [15], the approximation solution for SCP is much
harder than the classical set cover problem, where a logarithmic
bound approximation is available. The best known approach for
the SCP is the following greedy algorithm:

Let R be the set of objects already covered, where R = ∅ ini-

tially; then at each iteration, we select the minimum of these two

choices: 1) a node i such that 1
|C(R∪{i})\C(R)|

is minimum; and 2)

a pair of nodes i and j such that 2
|C(R∪{i,j})\C(R)|

is minimum. We

repeat such iteration until all elements are covered (R = U).

This greedy algorithm has been proved to yield an O(
√

N log N)
approximation ratio, where N is the cardinality of the ground set
N = |U |, for the cardinality SCP problem. Note that we can di-
rectly employ this algorithm to the GSC problem as follows. We
add a virtual vertex v0 in the GSC problem, and then we link each
vertex in the original graph with this virtual vertex. After that, we
also move the sets of elements associated with each vertex S(v) to
the corresponding new edge, i.e., S(v, v0). We also assume the cost
of virtual vertex v0 is zero. Thus, we transform our GSC problem
into a SCP problem.

Given this, to solve the GSC problem, we can always 1) cover the

virtual vertex at the first step since there is no cost associated with

it; 2) employ the greedy algorithm for SCP to complete the cov-

ering process. Clearly, the approximation bound achieved by this
procedure is no worse than O(

√
N log N) (considering the optimal

first step is always given by covering the virtual vertex).

4. A TWO-STAGE APPROACH
In this section, we describe an overall approach based on the

GSC problem to generate a minimal (2×2)-block interaction model.
Since it is hard to find the overall optimal number of core blocks
for a collection of frequent itemsets Fα, we consider a two-stage
algorithm for this purpose. In the first stage, we seek a minimal

number of blocks which use only the � operator to support the en-
tire collection of frequent itemsets. In the second stage, we seek a
minimal number of blocks which use only the � operator to rep-
resent the blocks discovered in the first stage. Before we describe
each of the two stages in details (Subsection 4.1), we first discuss
several simple properties which can help simplify the search for the
(2 × 2) block interaction model.

We will first simplify our problem by reducing both the tar-
geted frequent itemsets and by limiting the scope of candidate core
blocks. First, let the targeted collection frequent itemsets be Fα.
We make the following observations:

OBSERVATION 1. Let CFα be the set of all closed frequent

itemsets with minimal support α (an itemset is closed if no superset

has as high a support level, CFα ⊆ Fα. For a set of core blocks B,

if it can support each closed itemset in CFα under the (2×2)-block

support expression, i.e., it is a (2 × 2) block interaction model for

CFα, then, it is a (2× 2) block interaction model for Fα (and vice

versa).

This observation allows us to focus on only the closed frequent
itemsets CFα in searching for the (2× 2) block interaction model.

OBSERVATION 2. Let B be the set of core blocks of an (2× 2)-

block interaction model for the collection of closed frequent item-

sets CFα. Then, for any block Bi = Ii × Ti ∈ B, we can

always expand its transaction set to be T (Ii), where T (Ii) in-

cludes all the transactions containing (supporting) Ii. We refer

to block Ii × T (Ii) as a supporting block. We can further ex-

pand the itemset Ii of the supporting block such that Ii ⊆ I ′

i and

T (I ′

i) = T (Ii) where there is no other itemset I ′′

i with I ′

i ⊂ I ′′

i and

T (Ii) = T (I ′

i) = T (I ′′

i). In other words, I ′

i is a closed itemset,

and we refer to the expanded block as a closed supporting block.

This observation confirms that in any (2 × 2) block interaction
model, each core block can be replaced by a closed supporting

block. Thus, to simplify our search, the only candidate core blocks
we need to consider are closed blocks. In addition, since one of the
goals of this work is to reduce the collection of frequent itemsets
to a very small number of them, we can further limit the candidate
core blocks to those whose itemsets are closed frequent itemsets
(CFα).

Formally, let the set of all candidate core blocks be CB = {I ×
T (I)|I ∈ CFα}. Given this, we would like to search B ⊆ CB,
such that with minimal |B|, each closed frequent itemset can be
supported or explained by a (2 × 2) block expression:

arg min
|B|

B |= CFα,B ⊆ CB

Note that if B1, B2 ∈ CB, then, I(B1 � B2) ∈ CF 2
α, where

CF 2
α = {I1 ∪ I2|I1, I2 ∈ CFα}. This observation is used in the

next subsection for discovering the core blocks of a (2 × 2)-block
interaction model.

4.1 Vertical Union (�) and Horizontal Union
(�) Decomposition

As mentioned earlier, in order to find the set of core blocks for
a (2 × 2) block interaction model, we consider a two-stage algo-
rithm, where in each stage, we utilize a single type of operator (�
or �) to support a collection of (frequent) itemsets. The rationale
for this two-stage approach comes from the following observation.
Basically, for any closed frequent itemsets I ∈ CFα, we need a
(2 × 2)-block expression to support it: (B1 � B2) � (B3 � B4),
where B1, B2, B3 and B4 are core blocks. The optimization goal

58

is to minimize the total number of unique core blocks. Since this is
an NP-hard problem and the direct optimization is hard to achieve,
we consider the following heuristics. If the total number of unique
core blocks is small, then their combinations B1�B2 and B3�B4

which are used in the (2 × 2)-block expression in supporting each
closed frequent itemset also tend to be small. This observation in-
spires us to divide the overall problem into two subproblems which
can be solved independently: in the first stage, we seek a minimal
number of blocks which use only the � operator to support the en-
tire collection of frequent itemsets; in the second stage, we seek a
minimal number of blocks which use only the � operator to sup-
port the itemsets of the blocks discovered in the first stage. Here,
we describe these two stages in detail.
Stage 1 (Minimizing Vertical Union Decomposition): In the first
stage, we seek a minimal number of blocks (C) which use only the
� operator to support the entire collection of closed frequent item-
sets (CFα). Those blocks C discovered in the first stage then will
be decomposed using � operator in the second stage. Specifically,
the goal of the first stage is as follows:

DEFINITION 6. (Subproblem 1: Minimal Vertical Union De-

composition Problem) Given a collection of closed frequent item-

set CFα, we seek a small set of blocks, C = {C1, · · · , Cm}, where

Ci = Ii × T (Ii) and Ii ∈ CF 2
α, such that each itemset I ∈ CFα

can be supported or explained by at most two blocks Ci and Cj

in C, Ci � Cj |= I with respect to accuracy level ǫ1 (ǫ1 ≤ ǫ):

I ⊆ I(Ci � Cj) and

|T (Ci � Cj)| ≥ (1 − ǫ1)supp(I).

Now we transform Subproblem 1 into an instance of the GSC
problem (Subsection 3.2). Let U1 = CFα be the ground set to be
covered. Let G1 = (V1, E1) be the graph we will construct.
Vertex Set Construction: Each vertex in the graph G1 corre-
sponds to a candidate block in {Ii ×T (Ii)|Ii ∈ CF 2

α}, i.e., |V | =
|CF 2

α|. For each vertex v ∈ V1, let Bv be the corresponding can-
didate block (Bv ∈ {Ii × T (Ii)|Ii ∈ CF 2

α}). Each vertex v is
assigned with a set S(v) which contains contains all the closed fre-
quent itemsets being supported or explained by Bv:

S(v) = {I ∈ CFα|Bv |= I}

i.e., I(Bv) ⊆ I and |T (Bv)| = supp(I(Bv)) ≥ (1− ǫ1)supp(I).
Edge Set Construction: For any two vertices v1 and v2 in G1,
let set S(v1, v2) include all the closed frequent itemsets which are
supported by Bv1

� Bv2
but are not supported by Bv1

or Bv2
:

S(v1, v2) = {I ∈ CFα|Bv1
� Bv2

|= I}\(S(v1) ∪ S(v2)) (∗)

i.e., I(Bv1
)∩I(Bv2

) ⊇ I and |T (Bv1
�Bv2

)| ≥ (1−ǫ1)supp(I)
(how to efficiently compute |T (Bv1

� Bv2
)| will be discussed in

Subsection 5.1). If S(v1, v2) is not empty, then, these two vertices
v1 and v2 are linked and set S(v1, v2) is assigned to the corre-
sponding edge.

It is easy to see that each subset of vertices Vs in G1 which cov-
ers the ground set, i.e., S(G1[Vs]) = U1, corresponds to a set of
blocks C = {Bv|v ∈ Vs} which supports the collection of closed
frequent itemsets CFα, i.e., C |= CFα (a solution for subproblem
1). Further, the optimal solution for the graph set problem is also
the optimal solution for subproblem 1. Finally, we note that based
on the greedy algorithm described in subsection 3.2, we obtain an
approximation bound O(

√
N log N) with N = |CFα|.

Stage 2 (Minimizing Horizontal Union Decomposition): In the
second stage, we will seek a minimal number of blocks (B) to sup-
port the blocks (C) discovered in the first stage. Formally, the goal
of this stage is formally described as follows.

DEFINITION 7. (Subproblem 2: Minimal Horizontal Union

Decomposition Problem) Let C be the set of blocks discovered

in the first stage, we seek a minimal number of closed supporting

blocks, B = {B1, · · · , Bk}, where Bi = Ii × T (Ii), Ii ∈ CFα,

such that the itemset I(C) of each block C ∈ C is supported or

explained by at most two blocks Bi and Bj in B, Bi �Bj |= I(C)
with respect to accuracy level ǫ2 = (ǫ−ǫ1)/2, i.e., I(C) ⊆ I(Bi�

Bj) and

|T (Bi � Bj)| ≥ (1 − ǫ2)supp(I(C)).

Now we transform Subproblem 2 into an instance of the GSC
problem. Let U2 = {I(C)|C ∈ C} be the ground set to be covered,
where C is the collection of blocks generated in the first stage. Let
G2 = (V2, E2) be the graph for this subproblem.
Vertex Set Construction: Each vertex v in G2 corresponds to a
closed supporting block B = I × T (I), where I ∈ CFα and is
assigned with a set S(v), which contains all the frequent itemsets
which are supported or explained by the corresponding block of v,
denoted as Bv:

S(v) = {I ∈ U2|B(v) |= I}

i.e., I(Bv) ⊇ I and |T (Bv)| ≥ (1 − ǫ2)supp(I).
Edge Set Construction: For any two vertices v1 and v2 in G2, let
set S(v1, v2) include all the itemsets in U which are supported by
Bv1

� Bv2
, but are not supported by Bv1

or Bv2
:

S(v1, v2) = {I ∈ U |Bv1
� Bv2

|= I}\(S(v1) ∪ S(v2)) (∗∗)

i.e., I(Bv1
)∪I(Bv2

) ⊇ I and |T (Bv1
�Bv2

)| ≥ (1−ǫ2)supp(I).
If S(v1, v2) is not empty, then these two vertices v1 and v2 are
linked and set S(v1, v2) is assigned to the corresponding edge.

Again, we observe that each subset of vertices Vs in G2 which
covers the ground set, S(G2[Vs]) = U2, corresponds to a set of
blocks B = {Bv|v ∈ Vs} which supports each itemset in C,
and the optimal solution for the graph set problem is also the op-
timal solution for subproblem 2. Using the greedy algorithm de-
scribed in subsection 3.2, we can obtain an approximation bound
O(

√
N log N) with N = |C|.

4.2 Correctness of the Two-Stage Approach
In this subsection, we prove that the blocks discovered in sub-

problems 1 and 2 form the core blocks of a (2×2) block interaction
model for CFα. Especially, we demonstrate how the user-preferred
accuracy level ǫ is distributed correctly into the two stages, ǫ1 ≤ ǫ

to stage 1 and ǫ2 = (ǫ − ǫ2)/2 to stage 2. The effect of different
choices of ǫ1 will be studied in Section 7. To facilitate our discus-
sion, we first make the following observations for the cardinality
of the transaction set generated by the vertical and horizontal union
operators.

OBSERVATION 3. Given any two blocks B1 = I1 × T (I1) and

B2 = I2 × T (I2), we have |T (I1)| = supp(I1) and |T (I2)| =
supp(I2). Then, the following properties hold:

|B1 � B2| = |T (I1) ∪ T (I2)|
= |T (I1)| + |T (I2)| − |T (I1) ∩ T (I2)|
= |T (I1)| + |T (I2)| − |T (I1 ∪ I2)|
= supp(I1) + supp(I2) − supp(I1 ∪ I2)

|B1 � B2| = |T1 ∩ T2| = supp(I1 ∪ I2)

THEOREM 3. The set of core blocks discovered by subproblems

1 and 2 form the basis for a (2× 2) block interaction model for the

collection of closed frequent itemsets CFα.

59

Proof sketch of Theorem 3 can be found in our technical re-
port [17]

5. FAST ALGORITHM FOR CORE BLOCK

DISCOVERY
In this section, we present the complete two-stage algorithm (Sub-

section 5.2) for discovering the core blocks of a (2×2)-block inter-
action model. In particular, we introduce several heuristics to deal
with the scalability issues (Subsection 5.1).

5.1 Scalability Issues and Heuristics
As discussed in Section 4, our approach for discovering the min-

imal (2 × 2) block interaction model contains two stages: the
vertical union decomposition and horizontal union decomposition
stages. Each stage involves two major computational steps: 1) con-
structing the instance of a GSC problem and then 2) invoking the
greedy GSC algorithm. However, both steps can be computation-
ally expensive.
GSC construction: Let us look at the graph construction for the
first stage. The vertex set V1 corresponds to CF 2

α = {Ii∪Ij |Ii, Ij ∈
CFα} which includes the pairwise combination of any two closed
frequent itemsets. To construct edge set E1, we try to join any
two vertices which involves O(|CF 2

α|2) computational complex-
ity. Even though |CF 2

α| << |CFα|2, this is still rather expensive.
A particular difficulty exists in computing S(v1, v2), which needs

to determine if |T (Bv1
�Bv2

)| ≥ (1−ǫ1)supp(I) for any frequent
closed itemset I , where Bv1

= I1 ×T (I1) and Bv2
= I2 ×T (I2)

(I1, I2 ∈ CF 2
α). We can utilize Observation 3 to solve this prob-

lem: |T (Bv1
� Bv2

)| = supp(I1) + supp(I2) − supp(I1 ∪ I2).
Therefore, we need precompute the support for CF 2

α and CF 4
α =

{I1 ∪ I2|I1, I2 ∈ CF 2
α}. Clearly, this can be very costly.

To deal with this problem, we employ two heuristics to effec-
tively reduce the candidate block search space. The first heuristic
considers the support constraints on the candidate blocks. If an
itemset in CF 2

α has lower support, then its likelihood to combine
with other itemsets for recovering the supports of frequent itemsets
may be smaller. To compensate, we may request each candidate
itemset itself should cover at least one frequent itemset. This sug-
gests that each itemset in CF 2

α should have a support no less than
(1 − ǫ)α. In addition, since each candidate block can be improved
by a corresponding closed supporting block (Observation 2), we
further focus on only those closed itemsets in CF 2

α instead of all
the members. In sum, the set of candidate blocks in stage 1 is writ-
ten as CF(1−ǫ)α ∩ CF 2

α.
Interestingly, we note that graph construction for the second stage

has a lesser scalability issue because its vertex set V2 corresponds
to CFα, which is smaller than CF 2

α in the first stage. In addition,
only |C| blocks need to be covered, which can be orders of magni-
tude less than CFα for the first stage.
GSC Greedy Algorithm: Now we take a look of the GSC algo-
rithm based on the greedy algorithm for the set-cover-with-pairs
(SCP) problem. In this greedy algorithm, we consider any pair of
vertices in the graph as a candidate for covering. Actually, we only
need to consider pairs of vertices that are adjacent (no improvement
over single vertex if they are not connected), but this still results
in O(|E1|) and O(|E2|) time complexity for each iteration of the
GSC algorithm in the first and second stage, respectively.

It is interesting to observe the following properties on the GSC
problem for the first stage.

LEMMA 2. In graph G1 = (V1, E1) of the first stage, for any

edge set S(v1, v2), there is a vertex set S(v3), such that S(v1, v2) ⊆
S(v3).

Proof: For edge (v1, v2) that covers any frequent itemsets in CFα,
then |T (Iv1

) ∪ T (Iv2
)| ≥ (1 − ǫ)α. Since our candidate blocks

in the first stage consider at least CF(1−ǫ)α ∩ CF 2
α, it means there

is an itemset Iv3
such that Iv3

⊆ Iv1
∩ Iv2

and supp(Iv3
) =

supp(Iv1
∩Iv2

) ≥ |T (Iv1
)∪T (Iv2

)|, i.e., Iv3
is the corresponding

closed items of Iv1
∩ Iv2

. 2

A similar observation can be made for G2 = (V2, E2) for the
second stage. In these types of SCP (i.e., for each edge set S(v1, v2),
there is a vertex set S(v3) that covers at least as much), we ob-
serve that the ratio between the price of choosing an optimal ver-
tex 1

|C(R∪{i})\C(R)|
and the price of choosing an optimal pair of

vertices (an edge) 2
|C(R∪{i,j})\C(R)|

is no more than 3/2 (Greedy

algorithm for SCP, Section 3). This basically suggests that the ben-
efit of choosing a pair (an edge) may be limited. Therefore, we can
simplify and speed up the GSC algorithm as follows:

1. Let R be the set of objects already covered, R = ∅ initially;

2. At each iteration, we select a vertex v such that

|S(G[R ∪ {i}])\S(G[R])| is maximum;

3. We repeat 2) until all elements in U are covered.

This algorithm is referred as GraphSetCover.

Algorithm 1 CoreBlockDiscovery(DB,CFα, ǫ)

Require: CFα: frequent closed itemsets in DB with minimum support α
Require: ǫ: user-defined accurracy level

{Stage 1: Block Vertical Union (�) Decomposition}
1: CF 2

α ← {I1 ∪ I2|I1, I2 ∈ CFα};
2: CF ← CF(1−ǫ)α ∩ CF 2

α {reducing the candidate blocks};

3: CF 2 ← {I1 ∪ I2|I1, I2 ∈ CF} ;
4: ComputeSupport(CF 2\CF(1−ǫ)α); {Compute support for each item-

set in CF }
{Vertex Set Construction:}

5: for all Iv ∈ CF do

6: V1 ← V1 ∪ {(Iv , supp(Iv)};
7: S(v)← {I ∈ CFα|I ⊆ Iv ∧ supp(Iv) ≥ (1− ǫ1)supp(I)};
8: end for

{Edge Set Construction:}
9: for all (I1, I2) ∈ CF × CF do

10: S(v1, v2)← {I ∈ CFα|I1 ∩ I2 ⊇ I ∧ supp(I1) + supp(I2)−
supp(I1 ∪ I2) ≥ (1− ǫ1)supp(I)}\(S(v1) ∪ S(v2));

11: if S(v1, v2) 6= ∅ then
12: E1 ← E1 ∪ {(v1, v2)};
13: end if
14: end for

15: C ← GraphSetCover(G1(V1, E1), CFα);
{Stage 2: Block Horizontal Union (�) Decomposition}

16: U ← {I(C)|C ∈ C};
{Vertex Set Construction:}

17: for all Iv ∈ CFα do
18: V2 ← V2 ∪ {(Iv , supp(Iv)};
19: S(v)← {I ∈ U |I ⊆ Iv ∧ supp(Iv) ≥ (1− ǫ2)supp(I)};
20: end for

{Edge Set Construction:}
21: for all (I1, I2) ∈ CFα × CFα do
22: S(v1, v2) ← {I ∈ U |I1 ∪ I2 ⊇ I ∧ supp(I1 ∪ I2) ≥ (1 −

ǫ2)supp(I)}\(S(v1) ∪ S(v2));
23: if S(v1, v2) 6= ∅ then
24: E2 ← E2 ∪ {(v1, v2)};
25: end if

26: end for
27: B ← GraphSetCover(G2(V2, E2), U);

5.2 Algorithm Description
Algorithm 1 sketches the complete two-stage approach (includ-

ing both vertical union (�) and horizontal union (�) decomposi-
tion, Section 4.1).

60

Lines 1 to 15 describe Stage 1 of Algorithm 1 for vertical union
decomposition. We first generate the candidate itemsets and their
supports in Lines 1 to 4. Note that to compute the support for
candidate itemsets in CF 2\CF(1−ǫ)α, we simply organize those
itemsets in a prefix tree and then count their occurrences by enu-
merating the subsets in each transaction. We refer to this procedure
as ComputeSupport (details omitted). We then construct the ver-
tex set of G1 (Lines 5 to 8) and its edge set (Lines 9 to 13. Once
the graph G1 is constructed, the GSC algorithm is invoked to cover
CFα using core blocks in C.

Similarly, Stage 2 of Algorithm 1 for horizontal union decompo-
sition is described from Lines 16 to 27. Here, the ground set U (to
be covered) includes all the itemsets of blocks generated by Stage
1. We then construct the vertex set and edge set of G2 (Lines 17 to
25) Finally, after the graph G2 is constructed, the GSC algorithm is
called to find the final core blocks B, which is also the core blocks
of the entire (2 × 2)-block interaction model (Line 27).
Computational Complexity: Algorithm 1 consists of four parts:
(1) vertex construction of G1, (2) edge construction of G1, (3) ver-
tex construction of G2, and (4) edge construction of G2, plus graph
set cover for G1 and G2. The total time complexity for the four
parts is O(|CF |f(|CFα|))+O(|CF |2|f(CFα|))+O(|CFα|f(|U |))
+O(|CFα|2f(|U |)) = O(|CF |2f(|CFα|) + |CFα|2f(|CF |)).
Here f() is the cost of function to check if any itemset in CFα is
included in a vertex itemset or edge itemset. The naĩve implemen-
tation based on a linear scan yields f(|CFα|) = |CFα|. However,
we can improve this procedure by treating CFα as a transactional
database where each transaction is an itemset. Then, we can orga-
nize it by the vertical format, i.e., for each item, which transactions
contains it. Thus, the checking process can be improved signif-
icantly. The time complexity of GSC may vary according to its
detailed implementation. We only need to consider Stage 1 as it
is more expensive than Stage 2. A simple greedy algorithm has a
time complexity proportional to the size of the the graph (in our
case O(|CF |)) and the set of the ground set (in our case O(CFα))
to be covered. Putting these together, the overall time complexity
of Algorithm 1 is O(|CF |2f(|CFα|) + |CFα|2f(|CF |)).

6. RELATED WORKS
Numerous efforts have been made to reduce the number of fre-

quent patterns, especially for itemsets. Well-known examples in-
clude maximal frequent patterns [19], closed frequent patterns [21],
free-sets [5], disjunction-free sets [7], non-derivable itemsets [9, 8,
20], and δ-cluster notation [29]. Most of these methods try to iden-
tify certain rules to filter out “non-essential” itemsets. Even though
some of the rules utilize disjunctive rules or deductive rules which
share a certain spirit with our block-interaction modeling, their ob-
jectives do not address utilizing a small collection of basic itemsets
to “generatively” explain or recover other frequent itemsets. In our
scheme, even if an itemset can be explained by other itemsets, it
may still serve as a core block. We note that δ-cluster also tries
to apply the set cover idea to concisely represent the collection of
frequent itemsets. However, it does not provide a generative view.
Indeed, the δ-cluster method can be viewed as a special case of
ours: a (1 × 1)-block interaction model with no block union oper-
ators.

In [18], we developed an approach to provide a generative view
of an entire collection of itemsets. However, that model cannot
recover support information for an individual itemset. Also, the
optimization goal of [18] is not to reduce the number of frequent
itemsets to a small core set, but to minimize the representation or
storage cost of maximal itemsets. In [18], we proposed a bipartite
graph set cover problem which is equivalent to a set cover problem.

Datasets I T density

connect 129 67557 dense

pumsb 7116 49046 dense

chess 75 3,196 dense

retail 16469 88162 sparse

T40I10D100K 1000 100000 sparse

Table 1: Datasets Characters. I is the total number of items

and T is the total number of transactions

In this work, the proposed graph set cover problem is much more
general and more difficult than the classical set cover problem.

7. EXPERIMENTAL RESULTS
In this section, we report the effectiveness of (2 × 2)-block in-

teraction modeling in summarizing the frequent itemsets on both
real and synthetic datasets. Specifically, we are interested in the
following questions:

1. How does our block interaction model(B.I.) compare with
the state-of-art summarization schemes, including Maximal
Frequent Itemsets [19](MFI), Close Frequent Itemsets [21](CFI),
Non-Derivable Frequent Itemsets [9](NDI), and Representa-
tive pattern [29](δ-Cluster).

2. How do different parameters, including α, ǫ, and ǫ1 affect the
conciseness of the block modeling, i.e., the number of core
blocks?

In order to answer the above questions, we design three groups
of experiments:
Group 1: In the first group of experiments, we vary the support
level α for each dataset with a fixed user-preferred accuracy level ǫ

(either 5% or 10%) and fix ǫ1 = ǫ

2
.

Group 2: In the second group of experiments, we study how user-
preferred accuracy level ǫ would affect the model conciseness (the
number of core blocks). Here, we vary ǫ generally in the range
from 0.1 to 0.2 with a fixed support level α and ǫ1 = ǫ

2
.

Group 3: In the third group of experiments, we study how the
distribution of accuracy level ǫ1 in the two stages would affect the
model conciseness. We vary ǫ1 between 0.1ǫ and 0.9ǫ with fixed
support level α and the overall accuracy level ǫ.
Datasets and Experimental Environment: We conducted our eval-
uation on a total of 5 datasets, including four real datasets and one
synthetic dataset. Three of them are dense datasets and two of them
are sparse datasets. All of them are publicly available on the FIMI
repository 1. The basic characteristics of the datasets are listed in
Table 1. In our experiments, we use the MAFIA algorithm [6],
which is publicly available online2, to generate frequent itemsets,
closed frequent itemsets and maximal frequent itemsets. Our algo-
rithms were implemented in C++ and run on Linux 2.6 on an Intel
Xeon 3.2 GHz processor with 4GB memory.
Results from Group 1: Table 2, 3, 4, and 5 show the results
of Group 1 on the real datasets connect, pumsb, chess, and retail,
respectively. Table 6 shows the results on the synthetic dataset
T40I10D100K. In these experiments, we can see clearly that the
(2 × 2) interaction model consistently produces the most concise
representation for different support levels. In particular, our results
show that the number of core blocks needed to represent the entire
collection of frequent itemsets, including their support information,
is even less than the number of maximal frequent itemsets (MFI),
one of the best summarization methods for frequent itemsets, but
which does not include support information.

1http://fimi.cs.helsinki.fi/data/
2http://himalaya-tools.sourceforge.net/Mafia/

61

α MFI CFI NDI δ-Cluster B.I.

0.92 175 2212 168 178 56

0.91 192 2819 184 196 56

0.90 222 3486 199 222 72

0.89 261 4218 223 279 85

0.88 313 5106 240 332 89

Table 2: Group1.Connect: ǫ = 0.05

α MFI CFI NDI δ-Cluster B.I.

0.90 259 1465 585 259 48

0.89 348 2186 763 348 82

0.88 500 3160 501 988 88

0.87 633 4508 1200 634 99

0.86 825 6245 1470 826 262

Table 3: Group1.Pumsb: ǫ = 0.1

α MFI CFI NDI δ-Cluster B.I.

0.875 74 1059 133 83 81

0.850 119 1885 172 137 82

0.825 176 3189 218 209 126

0.800 226 5083 281 288 109

0.775 325 7679 352 426 266

Table 4: Group1.Chess: ǫ = 0.05

α MFI CFI NDI δ-Cluster B.I.

0.007 167 315 317 294 136

0.006 219 417 418 391 176

0.005 284 580 582 545 241

0.004 424 831 838 783 335

0.003 692 1393 1410 1325 538

Table 5: Group1.Retail: ǫ = 0.05

α MFI CFI NDI δ-Cluster B.I.

0.032 608 685 686 685 458

0.031 645 730 731 730 472

0.030 700 793 794 793 486

0.029 741 842 843 842 495

0.028 812 924 925 924 506

Table 6: Group1.T40I10D100K: ǫ = 0.1

ǫ MFI CFI NDI δ-Cluster B.I.

0.06 222 3486 199 225 104

0.08 222 3486 199 223 50

0.1 222 3486 199 222 40

0.12 222 3486 199 222 27

0.14 222 3486 199 222 19

Table 7: Group2.Connect: α = 0.9

ǫ MFI CFI NDI δ-Cluster B.I.

0.06 219 417 418 390 176

0.07 219 417 418 389 175

0.08 219 417 418 389 175

0.09 219 417 418 220 233

0.1 219 417 418 389 203

Table 8: Group2.Retail: α = 0.006

ǫ1 MFI CFI NDI δ-Cluster B.I.

0.01 259 1465 585 259 28

0.03 259 1465 585 259 39

0.05 259 1465 585 259 48

0.07 259 1465 585 259 87

0.09 259 1465 585 259 258

Table 9: Group3.Pumsb: α = 0.9, ǫ = 0.1

ǫ1 MFI CFI NDI δ-Cluster B.I.

0.005 219 417 418 391 216

0.015 219 417 418 391 401

0.025 219 417 418 391 176

0.035 219 417 418 391 175

0.045 219 417 418 391 175

Table 10: Group3.Retail: α = 0.006, ǫ = 0.05

Specifically, Table 2 shows the number of core blocks (core item-
sets) in B.I. is on average more than 3 times smaller than the num-
ber of patterns in MFI, NDI and δ-Cluster. It is 50 times more
compact than CFI. Table 3 shows that B.I. is 5 times better than
MFI and δ-Cluster, 9 and 32 times better than CFI and NDI respec-
tively. In Table 4, the result sizes of MFI, NDI and δ-Cluster are
around 1.5 times more than the number of core blocks, and B.I. is
27 times better than CFI. In Table 5, the block size in B.I. is notice-
ably smaller than MFI, and less than half of those results produced
by other methods, while in Table 6, our B.I. method achieves 1.5
times better compactness than the others.
Results from Group 2: In the second group of experiments, we fix
α for each dataset and vary ǫ between 1 % and 20%. Due to the lack
of space, we only provide the experimental results on two datasets,
one dense dataset (Connect) and one sparse dataset (Retail). For the
dense dataset connect, Tahle 7 shows the number of core blocks
shrinks as the user-preferred accuracy level grows. Clearly, this
is consistent with the intuition that less accurate recovery needs
fewer blocks and more accurate recovery needs more core blocks.
Specifically, for the dense dataset (Connect), the number of core
blocks (itemsets) is up to more than 10 times better than MFI, NDI,
and δ-Clusters, and on average 183 times smaller than CFI. Our
method also works well for the sparse dataset: Table 8 shows that
the number of core blocks is smaller than that of MFI, and 2 times
more compact than CFI, NDI and δ-Cluster.
Results from Group 3: For the similar reason, we only report on
two datasets for the third group of experiments. We first fix α to be
0.9 for the dense dataset Pumsb, 0.006 for the sparse dataset Retail,
and vary ǫ1 from 0.1ǫ to 0.9ǫ.

For the dense dataset Pumsb, when ǫ1 = 0.7ǫ, B.I. is about 3
times better than MFI and δ-Cluster, 6.7 times better than NDI,
and 16.8 times better than CFI. However, when ǫ1 decreases to
0.1ǫ, B.I. performs almost 10 times better than MFI and δ-Cluster,
20 times better than NDI, and even 52 times better than CFI. In-
terestingly, we can observe quite different performance of B.I. on
the sparse dataset Retail (Table 10) when ǫ1 decreases. This sug-
gests that ǫ1 has very different impacts on B.I. in different datasets.
While for a given dataset, we may be able to obtain a general un-
derstanding of its performance (by looking at how each stage can
effectively explain their input itemsets), an analytical method for
optimizing ǫ1 for different dataset is an interesting open question.

8. CASE STUDY
In this section, we study the effectiveness of applying block in-

teraction model on a real biomedical application. First, we ap-
ply our block interaction model on the human phenotype-to-gene
dataset 3 with 1.5% support level. After discarding blocks which
contain too few genes to be biologically significant, we obtain 63
blocks containing 63 gene clusters for the following study, which
suggests these core blocks may contain very promising biomedical
information.

The identified gene clusters may contain information regarding

3http://www.human-phenotype-ontology.org/index.php/downloads.html

62

diseases groups and may also be used as new disease related gene
groups or even biomarkers for prognosis. To test this, we selected
a dataset of gene expression profiles (microarray) for 295 breast
cancer patients (the NKI dataset [24, 23]). This cohort contains
patients with multiple subtypes of breast cancers including lymph
node (LN) positive, LN-negative, estrogen receptor (ER) positive
and ER-negative. Previously there have been many studies for de-
riving prognostic gene markers for breast cancers using this dataset.
In this paper, we focus on one subtype with poor prognosis (e.g.,
metastatic, short expected survival time, and poor response to drugs),
namely the ER-negative. Despite the fact that this subtype affects
about 1/3 of breast cancer patients, there has not been much stud-
ies on the molecular signature for predicting the prognosis of this
group of patients. For each gene cluster, we use them as features to
separate selected subtypes of patients into two subgroups using K-
means algorithm (K = 2, repeat 100 times for each test) based the
expression profiles of these patients over the feature genes. Note
that in a cluster only genes whose names exactly appear in the NKI
dataset will take effects in our test. The survival curves (Kaplan-
Meier curves) are then plotted for each subgroup and the log-rank
test is used to examine if there is significant difference in survival
times between the two subgroups which indicates that the gene
cluster may be used as a biomarker for predicting patient prognosis
in breast cancer. We also compare our results with the well-known
70-gene signature derived in [24].

Figure 4: Left: The Kaplan-Meier curves for the two groups

from the ER-negative patients separated using the cluster gen-

erated from by the 70-gene signature. Right: The Kaplan-

Meier curves for the same group of patients obtained using the

BI algorithm.

For the ER-negative patients, out of the 63 gene lists, 19 of them
can separate the patients into two groups with significant differ-
ence in survival times (p < 0.05). For example, one gene cluster
(FGFR2, PEX10, PEX14, PEX13, PEX1, PEX26, PEX3, PEX19,
PEX5) show separation of the patients with significant difference
in survival time (p = 0.00531). As a comparison, the well-known
70-gene signature cannot even be applied to this group of patients.
Our result not only presents a potential new biomarker for the ER-
negative breast cancer, but also provides a new biological hypoth-
esis on the role of peroxisome in the ER-negative breast cancer
progression since this cluster of genes are highly enriched with per-
oxisomal genes (Fisher’s exact test for Gene Ontology enrichment
analysis p < 10−22).

9. CONCLUSIONS
Can we summarize a collection of frequent itemsets and provide

accurate support information using only a small number of frequent

itemsets? This problem is not only of practical importance, but also
of theoretical interest. It has become one of the central problems

in recent frequent pattern mining research. The existing methods
have mainly focused on leveraging simple and basic rules to de-
fine and then remove non-essential patterns. In this work, we take
a different route by focusing on different but also fundamentally
important questions: How does the complexity of frequent patterns

arise? Can the large number of frequent itemsets be generated

from a small number of patterns through their interactions? In
our search for a generative view of the collection of frequent pat-
terns, we have developed the novel block-interaction model to con-
cisely summarize a collection of frequent patterns. This model not
only brings a new view of the frequent patterns, but also opens
a set of new research questions: Should frequent patterns be a
phenomenon or the targeted knowledge? What is the underlying
knowledge/rules for frequent patterns? Will such knowledge (like
the core block/itemsets) be more useful than the frequent pattern
themselves? In addition, this model also addresses an important
challenge for data mining: Given a set of mining results, how can
we explain them or visualize them to the end users? The model de-
veloped here clearly gears towards such a goal. Finally, our study
also opens up a list of research questions for algorithmic research,
for instance, can we develop an algorithm for graph set cover with
better approximation bound?

10. REFERENCES
[1] Foto Afrati, Aristides Gionis, and Heikki Mannila.

Approximating a collection of frequent sets. In KDD, pages
12–19, 2004.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami.
Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD

Conference, pages 207–216, May 1993.

[3] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms
for mining association rules in large databases. In
Proceedings of the 20th International Conference on Very

Large Data Bases, pages 487–499, 1994.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Mining
sequential patterns. In Proceedings of the Eleventh

International Conference on Data Engineering, pages 3–14,
1995.

[5] Jean-François Boulicaut, Artur Bykowski, and Christophe
Rigotti. Free-sets: A condensed representation of boolean
data for the approximation of frequency queries. Data Min.

Knowl. Discov., 7(1):5–22, 2003.

[6] Douglas Burdick, Manuel Calimlim, Jason Flannick,
Johannes Gehrke, and Tomi Yiu. Mafia: A maximal frequent
itemset algorithm. IEEE Trans. Knowl. Data Eng.,
17(11):1490–1504, 2005.

[7] Artur Bykowski and Christophe Rigotti. Dbc: a condensed
representation of frequent patterns for efficient mining. Inf.

Syst., 28(8):949–977, 2003.

[8] T. Calders, C. Rigotti, and J-F. Boulicaut. A survey on
condensed representations for frequent sets. In J-F.
Boulicaut, L. de Raedt, and H. Mannila, editors,
Constraint-Based Mining, volume 3848 of LNCS. Springer,
2006.

[9] Toon Calders and Bart Goethals. Non-derivable itemset
mining. Data Min. Knowl. Discov., 14(1):171–206, 2007.

[10] Uriel Feige. A threshold of ln n for approximating set cover.
J. ACM, 45(4):634–652, 1998.

[11] Floris Geerts, Bart Goethals, and Taneli Mielikäinen. Tiling
databases. In Discovery Science, pages 278–289, 2004.

[12] Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen.

63

Geometric and combinatorial tiles in 0-1 data. In PKDD,
pages 173–184, 2004.

[13] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan.
Frequent pattern mining: current status and future directions.
Data Min. Knowl. Discov., 15(1):55–86, 2007.

[14] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov.
Mining top-k frequent closed patterns without minimum
support. In ICDM, pages 211–218, 2002.

[15] Refael Hassin and Danny Segev. Proceedings of the 25th
annual conference on foundations of software technology
and theoretical computer science (fsttcs). In FSTTCS, pages
164–176, 2005.

[16] Ruoming Jin, Muad Abu-Ata, Yang Xiang, and Ning Ruan.
Effective and efficient itemset pattern summarization:
regression-based approaches. In KDD, pages 399–407, 2008.

[17] Ruoming Jin, Yang Xiang, and Hui Hong. Block interaction:
A generative summation scheme for frequent patterns.
Technical Report TR-KSU-CS-2010-02, Computer Science,
Kent State University, May 2010.

[18] Ruoming Jin, Yang Xiang, and Lin Liu. Cartesian contour: a
concise representation for a collection of frequent sets. In
KDD, pages 417–426, 2009.

[19] Roberto J. Bayardo Jr. Efficiently mining long patterns from
databases. In SIGMOD Conference, pages 85–93, 1998.

[20] Juho Muhonen and Hannu Toivonen. Closed non-derivable
itemsets. In PKDD, pages 601–608, 2006.

[21] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi
Lakhal. Discovering frequent closed itemsets for association
rules. In ICDT, pages 398–416, 1999.

[22] Ardian Kristanto Poernomo and Vivekanand Gopalkrishnan.
Cp-summary: a concise representation for browsing frequent
itemsets. In KDD, pages 687–696, 2009.

[23] Marc J. van de Vijver, Yudong D. He, Laura J. van ’t Veer,
Hongyue Dai, Augustinus A.M. Hart, Dorien W. Voskuil,
George J. Schreiber, Johannes L. Peterse, Chris Roberts,
Matthew J. Marton, Mark Parrish, Douwe Atsma, Anke
Witteveen, Annuska Glas, Leonie Delahaye, Tony van der
Velde, Harry Bartelink, Sjoerd Rodenhuis, Emiel T. Rutgers,
Stephen H. Friend, and René Bernards. A gene-expression
signature as a predictor of survival in breast cancer. The New

England Journal of Medicine, 347(25):1999–2009, 2002.

[24] Laura J. van ’t Veer, Hongyue Dai, Marc J. van de Vijver,
Yudong D. He, Augustinus A. M. Hart, Mao Mao, Hans L.
Peterse, Karin van der Kooy, Matthew J. Marton, Anke T.
Witteveen, George J. Schreiber, Ron M. Kerkhoven, Chris
Roberts, Peter S. Linsley, Renĺę Bernards, and Stephen H.
Friend. Gene expression profiling predicts clinical outcome
of breast cancer. Nature, 415(6871):530–536, 2002.

[25] Chao Wang and Srinivasan Parthasarathy. Summarizing
itemset patterns using probabilistic models. In KDD, pages
730–735, 2006.

[26] Takashi Washio and Hiroshi Motoda. State of the art of
graph-based data mining. SIGKDD Explor. Newsl.,
5(1):59–68, 2003.

[27] Yang Xiang, Ruoming Jin, David Fuhry, and Feodor F.
Dragan. Succinct summarization of transactional databases:
an overlapped hyperrectangle scheme. In KDD, pages
758–766, 2008.

[28] Dong Xin, Hong Cheng, Xifeng Yan, and Jiawei Han.
Extracting redundancy-aware top-k patterns. In KDD, 2006.

[29] Dong Xin, Jiawei Han, Xifeng Yan, and Hong Cheng.
Mining compressed frequent-pattern sets. In VLDB, 2005.

[30] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin.
Summarizing itemset patterns: a profile-based approach. In
KDD, 2005.

[31] M. T. Yang, R. Kasturi, and A. Sivasubramaniam. An
Automatic Scheduler for Real-Time Vision Applications. In
Proceedings of the International Parallel and Distributed

Processing Symposium (IPDPS), 2001.

[32] Mohammed J. Zaki. Efficiently mining frequent trees in a
forest. In Proceedings of the eighth ACM SIGKDD

international conference on Knowledge discovery and data

mining, pages 71–80, 2002.

64

Authorship Classification:
A Syntactic Tree Mining Approach ∗

Sangkyum Kim, Hyungsul Kim, Tim Weninger, Jiawei Han
University of Illinois at Urbana-Champaign

{kim71, hkim21, weninge1, hanj}@illinois.edu

ABSTRACT
In the past, there have been dozens of studies on auto-
matic authorship classification, and many of these studies
concluded that the writing style is one of the best indica-
tors of original authorship. From among the hundreds of
features which were developed, syntactic features were best
able to reflect an author’s writing style. However, due to the
high computational complexity of extracting and computing
syntactic features, only simple variations of basic syntactic
features of function words and part-of-speech tags were con-
sidered. In this paper, we propose a novel approach to min-
ing discriminative k-embedded-edge subtree patterns from a
given set of syntactic trees that reduces the computational
burden of using complex syntactic structures as a feature
set. This method is shown to increase the classification ac-
curacy. We also design a new kernel based on these features.
Comprehensive experiments on real datasets of news articles
and movie reviews demonstrate that our approach is reliable
and more accurate than previous studies.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text Analysis; H.3.3 [Information Search and Re-
trieval]: Clustering; H.2.8 [Database Applications]: Data
Mining

General Terms
Algorithms, Pattern

∗
This research is part of the Blue Waters sustained-petascale comput-

ing project, which is supported by the National Science Foundation
(award number OCI 07-25070) and the state of Illinois. Blue Waters
is a joint effort of the University of Illinois at Urbana-Champaign,
its National Center for Supercomputing Applications, IBM, and the
Great Lakes Consortium for Petascale Computation. This work was
also sponsored in part by the National Science Foundation (under
grants IIS-09-05215, CCF-0905014, and CNS-0931975) and an ND-
SEG Fellowship award. Any opinions, findings, and conclusions or
recommendations expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

Keywords
Authorship Classification, Text Mining, Text Categoriza-
tion, Discriminative Pattern, Closed Pattern

1. INTRODUCTION
In computational linguistics and text mining domains,

there have been three classical classification problems: topic
classification, genre classification, and authorship classifica-
tion. Among those three problems, the most difficult one is
encountered when we try to classify documents in terms of
their authorship (known as authorship classification, author-
ship attribution and/or authorship discrimination). This
problem can be thought of as classifying documents based
on the writing styles of the authors. It is a nontrivial prob-
lem even for the human beings: while a human can easily
identify the topic and genre of a document, identifying its
authorship is harder. Even worse, if the documents are from
the same topic and genre, the task becomes much harder.

In the era of excessive electronic texts, authorship clas-
sification has been more and more important with a wide
variety of applications. Besides the early works of analyzing
disputed plays of Shakespeare(1887) [20] or anonymous doc-
uments of The Federalist Papers(1964) [23], it could also be
used to identify authors of short ‘for sale’ messages in a news-
group [37] and even for forensic investigations by identifying
authorship of e-mail messages [2]. Detecting plagiarism or
copyright infringement of unauthorized reuse of source code
by establishing a profile of an author’s style is another im-
portant application of authorship classification [6].

Existing approaches of authorship classification use var-
ious methods to extract effective features, most commonly
style markers such as function words [11, 35, 1, 13] and
grammatical elements such as part of speech (POS) tags [3,
12, 36]. Function words are the most common words that
have little semantic content of their own but usually indicate
a grammatical relationship or generic property. The success
of using function words and POS tags as features for au-
thorship classification indicates the usefulness of syntactic
information.

Unfortunately, research on more complex syntactic struc-
tures has not yet been flourished because of the lack of a
reliable, automatic tool which retrieves syntactic structures,
and because of the high computational cost associated with
syntactic structure-based algorithms. Instead, several rather
simple syntactic structures, such as rewrite rules [3, 12] and
n-grams of POS tags [11, 12, 15, 14] were discussed.

Lately, several advanced techniques were developed which
greatly improved the performance of Natural Language Pro-

65

Example. The major indexes fell more than 2 percent, and the surge that had lifted
the troubled indexes by more than 20 percent in the last month showed signs of
stalling as the reporting period for the first fiscal quarter of the year began.

...

...

...

S

S S .CC,

... NP

...
...

S

SBAR

WHNP

WDT

VP

...

...

VBD VP

PP

IN

...

NP

PP

IN NP

S

S

VP

VBD NP

... PP

IN

VP

VBG SBAR

IN

NP

...

...

PP

IN NP

... ...

S

NP

PP

IN NP

VP

PP

IN NP

VBD

S – simple declarative clause
NP – noun phrase
PP – prepositional phrase
IN – preposition
VP – verb phrase
VBD - verb, past tense

Pattern t Syntactic Tree S

Figure 1: A 2-ee subtree pattern t is mined from
two NY Times journalists Jack Healy and Eric Dash
who worked in the same business department. On
average, 21.2% of Jack’s sentences contained t while
only 7.2% of Eric’s sentences contained t.

cessing(NLP) tools [18] enabling reliable, highly accurate
sentence parsing into a syntactic tree of POS tags. Recently,
emerging research of question answering (QA) systems [22,
4, 30] adapted these advanced preprocessing techniques to
develop a tree kernel function that computed a matching
score of two syntactic trees in order to retrieve similar ques-
tions or to classify questions in the QA system. But those
approaches have several problems to be applied to author-
ship classification problem for the following reasons: (i) Even
though their tree kernel utilizes more complex features than
earlier works of rewrite rules and n-grams of POS tags, those
features were in restricted forms of subtrees of a syntactic
tree. There is a need to design a feature set that can cap-
ture syntactic information of a longer and more complicated
sentence structure than simple question formats. (ii) The
number of features becomes explosive once we consider all
possible subtrees (even with some restrictions), and it leads
to a burden on computational cost, however efficient a ker-
nel computation is. (iii) Existing tree kernels work only for
a data set of trees, not a data set of sets of trees. A question
can be transformed into a syntactic tree, but a document
which consists of a set of sentences becomes a set of syntac-
tic trees.

In this paper, we propose a novel syntactic feature set of
tree fragments allowing at most k-embedded edges (in short,
k-ee subtree). Compared with previous feature sets that
consists of distinct subtree components, our new feature set
captures the relationship between k+1 subtree components
of a syntactic tree, which leads to a better representation
of a data set of long and complex sentences. To reduce the
number of features, we only mine a set of discriminative and
frequent k-ee subtrees, which results in higher accuracy by
avoiding overfitting to the training data and by not gener-
ating non-discriminative features that often deteriorate the
performance. For the classification, we introduce a new tree
kernel by defining a proper value for each corresponding fea-
ture to be well-defined and effective on a data set of sets of
trees.

Figure 1 gives an example of a k-ee subtree pattern t for

k = 2. Pattern t is composed of three smaller induced sub-
trees, which are connected by two embedded edges (S,NP)
and (VP,PP). The differences of pattern distributions be-
tween two authors suggest that a set of k-ee subtree pat-
terns can be utilized as a good feature set for authorship
classification.

Our framework can also be considered as a tree-kernel
method, but it is different from previous tree-kernel ap-
proaches of a QA system in the following ways: First, our
objects to be classified are in a more general form. Previous
tree-kernel methods work for questions where each question
becomes one syntactic tree, while our approach are based on
documents where each document is a set of syntactic trees.
Since previous tree kernels work only between two syntac-
tic trees not between two set of syntactic trees, it cannot
be directly applied to the authorship classification problem.
Second, we use a more general feature set of subtree patterns
allowing k-embedded edges, which works well to represent
long and complex syntactic structures of a sentence. Third,
a tree-kernel method essentially matches two trees without
looking at the entire dataset. That is, it counts the common
number of subtree patterns of two syntactic trees. But, our
approach can get an overview of different classes of training
data to select the discriminative patterns as features.

We adapt the framework of discriminative frequent pat-
tern mining which showed good results for various problem
settings in unstructured and semi-structured data mining
such as mining discriminative frequent itemset, sequence,
and graph patterns to classify UCI datasets, software be-
haviors, and chemical compound data, respectively [8, 19,
31].

While other syntactic features utilize the bag-of-words model
to represent a document – which assigns the number of oc-
currences of a feature to its value – k-ee subtree patterns
cannot adapt the same way due to the overlapped occur-
rences. Since we consider all subtrees and even allow k-
embedded edges, a huge number of occurrences might over-
lap each other which would lead to an exaggeration of a fea-
ture value. At the other end, binary features will lose most
of their occurrence information which results in either 0 or
1. Therefore, we design a new way to assign proper values
for k-ee subtree features in between two extreme ends.

To validate the utility of our new feature set to others, for
fair comparisons, we apply the same classification algorithm
(SVM) to various feature sets over several real datasets. Ex-
perimental results demonstrate the effectiveness of our newly
proposed feature set of k-ee subtree patterns over the well-
known existing feature sets.

In summary, the contributions of this paper are as follows:

• We propose a new feature set of k-ee subtree patterns
for authorship classification.

• We develop an algorithm to mine discriminative k-ee
subtree patterns.

• We propose a new document representation based on
our new feature set of k-ee subtree patterns that is
proper for data of sets of trees.

• Through experiments on various datasets, we demon-
strate the utility of our proposed framework to provide
an effective solution for the authorship classification
problem.

66

The rest of the paper is organized as follows. Section 2
presents an overview of the related works. In Section 3,
we introduce various preliminary concepts, define our new
feature k-ee subtree pattern, and describe our k-ee subtree
pattern-based authorship classification framework. Section
4 presents a closed and frequent k-ee subtree mining algo-
rithm with several pruning techniques. In Section 5, we ex-
plain discriminative pattern mining with a sequential cover-
age approach. We report our experimental results in Section
6, followed by conclusions and future work in Section 7.

2. RELATED WORKS
There are two main steps involved in any authorship clas-

sification algorithms: feature extraction step and classifi-
cation step based on extracted features. For the feature
extraction step, since the earliest works that used a small
number of common words such as ‘and ’, ‘to’ as a feature set,
nearly 1,000 different features have been studied including
sentence length, chi-square score, lexical richness [25, 17],
vocabulary richness [10], function words [1], word n-grams
[26], character n-grams [14], and rewrite rules [3] with lots
of controversy on their effectiveness. Even though there was
an issue of fair comparison between feature sets because pre-
vious works conducted experiments based on their own data
sets with different classification methods [35, 27], function
words and rewrite rules were considered to show reliable re-
sults. In [27], comprehensive survey on different feature sets
were presented.

For the classification step, even though lots of new fea-
tures were explored for authorship classification, most of
the classification algorithms were simply adapted from well-
known classification algorithms in other domains such as
PCA [16], k-nearest neighbor, decision tree, bayesian net-
works [35], language model [36], and SVM [11, 12, 36, 15].
The ones that showed good performance in other fields like
language model method and SVM also showed high accu-
racy for authorship classification. For this reason, usually
SVM has been used to compare the effectiveness of feature
sets [12, 15], so in this paper we also use SVM for fair com-
parison between our new feature set and previous feature
sets.

Our proposed feature set of k-ee can be considered as a
variation of tree patterns. In data mining domain, there
have been several studies on tree pattern mining [33, 9, 28].
TreeMiner [33] is one of the pioneer of mining frequent tree
patterns. CMTreeMiner [9] mined closed and maximal fre-
quent tree patterns together.

For tree classification, rule-based classifiers (XRules [34],

CTC [38]) and a decision tree based classier (Tree2 [5]) were
proposed. But none of them could be applied to classify sets
of trees as documents.

3. PRELIMINARIES
Traditional authorship attribution approaches adopted func-

tion words, POS tags, and rewrite rules as a feature set
to build a classification model. Even though they achieved
good accuracy, there still existed room to find a more mean-
ingful feature set to improve the performance. In this sec-
tion, we describe rewrite rules which are somewhat complex
syntactic structures that hold more syntactic information
than the other two feature sets. Secondly, we define our
new feature set of k-ee subtree patterns.

3.1 Rewrite Rule
In [3], rewrite rules were considered to be building blocks

of a syntactic tree, just as words are building blocks of a
sentence. Here, a syntactic tree is a rooted and ordered tree
which is labeled with POS tags that represents the syntactic
structure of a sentence. Its interior nodes are labeled by non-
terminals of the grammar, and the leaf nodes are labeled by
terminals.

Compared to previous approaches that utilized function
words and POS tags, rewrite rules can hold functional struc-
ture information of the sentence. In linguistics, a rewrite rule
is in the form of “X → Y ” where X is a syntactic category
label and Y is a sequence of such labels such that X can be
replaced by Y in generating the constituent structure of a
sentence. For example, “NP → DT+JJ+JJ+NN ” means
that a noun phrase (NP) consists of a determiner (DT) fol-
lowed by two adjectives (JJ) and a noun (NN).

There is a limit when using rewrite rules as features of a
classification model. First, because of the restriction that
the entire rule cannot be broken into smaller parts, no sim-
ilarity between rules are considered. A large number of
slightly different rules are all counted as independent fea-
tures. For instance, a rewrite rule “NP → DT+JJ+NN ”,
missing one JJ from the above example, becomes a sepa-
rate rewrite rule. Second, since a rewrite rule is a two-level
tree structure, it is not enough to hold most of the syntac-
tic structure information of a sentence. For example, the
relationships between rewrite rules are missing, which can
hold more refined syntactic information. For these reasons,
we developed a new feature set of k-ee tree patterns that
are flexible and complex enough to represent the syntactic
structure information of a sentence.

3.2 k-Embedded-Edge Subtree Pattern
To overcome the drawbacks of the feature sets used in pre-

vious approaches, we extended the definition of the rewrite
rule to form a new feature set. Based on the analysis of the
rewrite rule, a new feature should be a multi-level tree struc-
ture to hold the novel information of the syntactic structure
of a sentence. Moreover, it should be allowed to contain only
a part of a rewrite rule. Induced subtree patterns of a syntac-
tic tree were one of the candidate feature set which satisfied
both conditions. But, our pilot experiments showed that a
small number of combinations of those induced subtree pat-
terns could achieve even higher accuracy, which motivated
us to define k-ee subtree patterns for our new feature set as
follows.

Definition 1. We define a tree t to be an induced subtree
of a tree s if there exists an identity mapping from t to s
preserving all parent-child relationships between the nodes
of t. We define an edge e of a tree s to be embedded iff e
is a pair of two nodes of s with an ancestor-descendant (not
parent-child) relationship. We define a k-embedded-edge
subtree (k-ee subtree) t of a tree s to be a set of induced
subtrees of s that can be connected by at most k embedded
edges.

Since we allow a k-ee subtree pattern to be not only a two-
level but also a multi-level subtree structure, the number of
k-ee subtree patterns would be exponential on the number
of trees and their sizes. We define a minimum support to
ensure we only mine general common patterns that will be
applicable to test data thus avoiding overfitting.

67

A

B E

C D

A

B

C D

A

B E

C D A

S1 S2 S3

Figure 2: A toy example of a database D with three
syntactic trees

A

BA

A

B

C D

A

B E

C D

A

B

C

t2 t3 t4 t5t1

Figure 3: Examples of frequent k-ee patterns in D
when k = 0 and α = 2

Definition 2. We define the support of a k-ee subtree
pattern t (denoted by sup(t)) to be the total number of
syntactic trees of sentences in training data that contains
t. We say t is frequent iff sup(t) ≥ α for a user-specified
minimum support threshold α.

As common words or function words were studied as fea-
tures for authorship classification in previous works, fre-
quent patterns share the philosophy that more general fea-
tures are preferred to discriminate the writing styles of the
authors.

Figure 2 shows a toy database D of three syntactic trees.
Given minimum support threshold 2, all five 0-ee subtree
patterns presented in Figure 3 become frequent. For exam-
ple, patterns t1, t2, t3, and t4 appears in all three syntactic
trees, so their supports are all 3. Pattern t5 only appears in
S1 and S3, so its support becomes 2.

Even though we only use frequent k-ee subtree patterns as
a feature set for a classification model, the potential number
of patterns can still become a bottleneck. To address this
problem, we introduce the concept of a closed pattern in
order to prevent generating redundant patterns; in this way
we can summarize frequent patterns into a smaller set of
closed patterns without any loss of information.

Definition 3. We define a k-ee subtree pattern t to be
closed if there exists no tree pattern t′ that contains t with
sup(t′) = sup(t).

For example, two 0-ee subtree patterns t4 and t5 in Figure
3 are closed in the toy database D since their superpatterns
have smaller support. Patterns t1, t2, and t3 are not closed
since they have the same support with their superpattern
t4.

We will explain how to mine closed k-ee subtree patterns
efficiently utilizing several pruning techniques in Section 4.
In this way, using closed and frequent k-ee subtree patterns
as a new feature set not only reduces the size of the feature
set but also makes our authorship classification framework
more scalable.

A

B B B B

A

B B

Pattern t2 Syntactic Tree S2

Figure 4: An example of overcounting of overlapped
k-ee subtree pattern occurrences

3.3 Frequency Measure of k-ee Subtree
The frequency of a pattern within a document (or a set

of syntactic trees) is quite important in the sense that it
can be a good measure to discriminate the writing styles of
different authors. Previously well-known features such as
function words, POS tags, and rewrite rules adapted bag-of-
words approach that used the number of their occurrences
in a document as their frequency measure. However, the
k-ee subtree patterns cannot simply adapt the same fre-
quency measure because it generates many overlapped oc-
currences, which would lead to an exaggerated frequency
measure. Overlapped patterns appear because we consider
all kinds of subtrees allowing several embedded edges. Fig-
ure 4 is an illustration of this overcounting problem. The
syntactic tree S has only one A and four Bs, but the num-
ber of occurrences of pattern t becomes 6. More generally, if
A has n Bs as its children in S, then the occurrence count of
pattern t becomes O(n2). Since we allow k embedded edges
for a k-ee subtree pattern, this overcounting problem will be
even more amplified.

Our observation that a document is parsed into a set of
syntactic trees (of sentences) gave us an insight to define the
frequency measure of a k-ee subtree pattern in a different
way by counting the number of syntactic trees of a document
that contain the pattern.

Definition 4. We define the frequency of a k-ee subtree
pattern t in a document d (denoted by freq(t, d)) to be the
fraction of the number of syntactic trees of sentences in d
that contains t.

For example, if a document d is composed of S1, S2, and S3

in Figure 2, then the frequencies of patterns t1, t2, t3, and
t4 (in Figure 3) in d become all 1 while the frequency of a
pattern t5 in d becomes 2/3.

Note that our feature value is a normalized score in the
sense that we only consider the fraction of the number of
sentences in a document. In this way, we can remove the
effect of different document lengths.

3.4 k-ee Subtree-based Authorship Classifica-
tion

We propose a k-ee-subtree pattern-based authorship clas-
sification framework with the following four steps: (1) Con-
vert each document into a set of syntactic trees. As men-
tioned earlier, several high-quality parsing tools have been
developed recently. (2) Mine frequent k-ee subtree patterns
of the syntactic trees from the training data. There are sev-
eral reasons we use only frequent patterns. First, we do not
assume the parser works perfectly with no error, but we do
assume it works with a reasonable accuracy. A small rate
of error might produce strange patterns with low support.
Therefore, if we only use frequent patterns, we can reduce

68

the influence of parsing errors. Second, using patterns with
low support as features may cause overfitting and subse-
quently harm the classification accuracy. Statistically, using
frequent patterns of training data as features for the classifi-
cation model generalizes well to the test data, since frequent
patterns of training data have a higher chance to also ap-
pear in test data. (3) Select discriminative patterns from the
frequent k-ee subtree patterns. Depending on the user spec-
ified minimum support threshold, we might get a large num-
ber of frequent patterns which may again cause overfitting.
Therefore, we carefully choose only a small number of non-
redundant and highly discriminative patterns as the features
for the classification model. (4) Construct the classification
model with the discriminative patterns and training data.

4. K-EE SUBTREE PATTERN MINING
In the previous section, we explained the reasons to use

k-ee subtree patterns as a new feature set of authorship
classification. These patterns hold more profound syntac-
tic information (than other features including rewrite rules)
and are flexible enough to consider partial matching of the
syntactic trees. Even though the k-ee subtree patterns are
confined to be frequent and closed, the number of patterns
can still be very large. Therefore, the next task is to mine
these patterns efficiently.

In this section, we introduce a k-ee subtree pattern min-
ing method that (i) finds the frequent and closed patterns
efficiently and (ii) captures their frequencies in each docu-
ment. We do not generate candidate k-ee subtree patterns
and check for frequent and closed attributes. Instead, we
find a frequent k-ee subtree pattern, and extend it by adding
a node (that is guaranteed to be frequent) in a depth-first
search manner. Depth-first search pattern expansion enables
several pruning techniques for closed and frequent pattern
mining. We first introduce how to efficiently find a frequent
node for pattern extension, and then explain the pruning
techniques for closed pattern mining.

4.1 Pattern-Growth Approach
Previous apriori-based approaches for pattern mining gen-

erated a huge number of patterns and re-scanned the entire
database each time the size of candidate patterns were in-
creased to verify whether they were frequent. Recently, sev-
eral studies were conducted on the pattern-growth approach
by using the projected database in sequence and tree pattern
mining [24, 39]. In this study, we adapt these pattern-growth
techniques for frequent k-ee subtree pattern mining.

Instead of the apriori-based expensive candidate genera-
tion and test framework, we follow the following steps for
pattern-growth approach. First, find a size 1 frequent k-
ee subtree t in the training dataset D. Second, project the
postfix of each occurrence of t in the syntactic trees of D
into a new database Dt. Here, we say a postfix of an oc-
currence of t in a syntactic tree s to be the forest of the
nodes of s appearing after the occurrence of t in a pre-order
scan of s. Third, find a frequent node v in Dt that can be
attached to the rightmost path of t that forms a k-ee sub-
tree pattern. Once v is frequent in Dt, it ensures that the
extended pattern is also frequent, so we do not need to scan
the whole database D again. The reason we only search for
a frequent node that can be attached to the rightmost path
of t is to avoid generating duplicated patterns in the min-
ing process. Note that, in this study, we consider a node v

A

B

A

B

D

A

A

B

C D

A

B E

C D

A

B

C

A

B E

C

B

C D

A

B E

D

A

E

B

C

B

D

B

t2

t3

t4

t5

t6

t7

t8

t10 t12 t14

t13

t1 t11

Ct15

Dt16

A

B E

t9

Pruned

Figure 5: Pattern growth of k-ee subtree patterns
using pruning with minimum support 2 when k=0

B E

C D

B

C D

B E

C D A

Figure 6: Projected database of t1

attached to t by an induced edge forms a different pattern
from the one attached by an embedded edge because of the
k-embedded edge restriction. So we consider each case sep-
arately. Fourth, recursively go back to second step with the
extended pattern for every frequent node we found. Fifth,
recursively go back to the second step to expand all the other
size-1 frequent k-ee subtrees.

4.2 Pruning Methods
Figure 5 shows an example of the pattern-growth ap-

proach to mine 0-ee subtree patterns of a database of three
syntactic trees described in Figure 2 when the minimum
support threshold is 2. Each pattern is indexed in pattern-
generation order. We first search for size-1 frequent pat-
terns, which are t1, t11, t15, and t16 in this case. We choose
t1 as a starting point, and find frequent nodes that can be
attached to t1 from its projected database described in Fig-
ure 6. We find nodes B and E are frequent, and we extend
t1 to t2 by adding a node B. Once all frequent 0-ee subtree
patterns that extends t2 are all mined, then we extend t1 to
t10 by adding a node E. Similar procedures are recursively
performed until we mine all frequent patterns.

In our pattern-growth approach, the projected database
of a pattern t keeps shrinking as the mining process moves
on and t becomes a bigger superpattern. Note that we do
not physically create projected databases. In fact, instead
of keeping physical copy of postfix data, we use a pseudo-
projection that only stores a pointer to the syntactic tree
and the offset of each node of a pattern occurrence in the
syntactic tree to save memory and make the procedure more
efficient.

69

Algorithm 1: Procedure ClosedMine to mine k-ee
closed subtree patterns

input : Tree data set D, minimum support θ
output: Closed k-ee subtree patterns C

1 foreach frequent vertex t ∈ D do
2 ClosedMine_Sub(t,Dt,θ);
3 end

After we perform the pattern-growth method to mine all
frequent k-ee subtree patterns, we can remove the patterns
which are not closed. Instead of the inefficient two-step ap-
proach, we can integrate several well-known pruning tech-
niques for semi-structured data mining [32, 29, 9] into the
pattern-growth method to output only closed patterns. The
common intuition of the pruning methods is that we only
need to check immediate supertrees of a tree pattern t not
the whole supertree for the closure checking. In this paper,
we adapt the blanket convention of [9] to describe pruning
techniques for closed k-ee subtree pattern mining as follows.

Definition 5. Define the blanket of a k-ee subtree pattern
t (denoted by Bt) by the set of supertrees of t that has one
more node than t. For a pattern t′ ∈ Bt, we denote t′\t
to be an additional node v of t′ that is not in t. Here,
t′\t represents not only the vertex label of v, but also its
position and the type of edge connection (either induced or
embedded) between t and v. We define the right-blanket of
t (denoted byBr

t) as a subset ofBt where t′ ∈ Bt right iff t′\t
is the rightmost vertex of t′. We define the left-blanket of t
(denoted by Bl

t) by Bl
t = Bt −Br

t . For t′ ∈ Bt, we define t′

and t to be occurrence-matched if, for each occurrence of t
in a database, there is at least one corresponding occurrence
of t′. We define t′ and t to be sentence-matched if for any
syntactic tree s of a sentence in D that contains t it also
contains t′.

For example, in Figure 5, pattern t4 is in the blanket of
t7 since t4 is a superpattern of t7 by one more node C. And
also, pattern t4 is in both Bl

t7 and Br
t3 . Since t4 ∈ Bt7 and

each occurrence of t7 is contained in an occurrence of t4, we
say t4 and t7 are occurrence-matched.

The following two pruning techniques are based on occurrence-
level matching. Backward Extension Pruning(BEP) checks
the occurrence matching of the current mining tree pattern
t with previously mined supertrees of t, and Forward Ex-
tension Pruning(FEP) checks the occurrence matching of t
with the supertrees of t that will be mined later.

Proposition 1. (Backward Extension Pruning) For
a k-ee subtree pattern t, if there exists a supertree t′ ∈ Bl

t

such that t and t′ are occurrence-matched, then neither t nor
any supertrees of t as extensions of any node of its rightmost
path can be closed.

For example, pattern t7 and its descendants in Figure 5
are pruned since t4 is in the left blanket of t7, and t4 and t7
are occurrence-matched which satisfies the BEP condition.
Similarly, t10, t11, t15, t16 and their descendants are pruned
because of BEP criterion.

Proposition 2. (Forward Extension Pruning) For
a k-ee subtree pattern t, if there exists a supertree t′ ∈ Br

t

Algorithm 2: Subprocedure ClosedMine Sub used for
ClosedMine

1 if t satisfies BEP condition then return;
2 if no t′ ∈ Bt sentence-matches with t then
3 C ← C ∪ {t};
4 end
5 foreach t′ ∈ Btright do /* bottom up to enable FEP

pruning */

6 if t′ satisfies FEP condition then break;
7 if sup(t′) ≥ θ then
8 ClosedMine_Sub(t′,Dt′ ,θ);
9 end

10 end

such that t and t′ are occurrence-matched and the parent of
t′\t is v (where v is a vertex on the rightmost path of t),
then neither t nor any supertrees of t as extensions of any
proper ancestor node of v can be closed.

For example, pattern t6 and its descendants in Figure 5 are
pruned since all conditions for FEP are satisfied as follows:
(i) t4 is in the right-blanket of t3 (ii) D is t4\t3 (iii) A is
the proper ancestor node of D’s parent node in t4 (iv) t6
is an extension of t3 by adding a node E at A. Similarly,
pattern t9 and their descendants are pruned because of the
FEP criterion.

BEP described in Proposition 1 means that once we find a
pattern t′ is in the left-blanket of t that occurrence-matches
with t, then we do not have to perform pattern-growth of
t, because a pattern extension in the pattern-growth ap-
proach is performed in a depth-first traversal manner. FEP
described in Proposition 2 is a simple corollary of the BEP.

Algorithm 1 and 2 describe how to incorporate the prun-
ing methods BEP and FEP into pattern-growth approach
to mine closed and frequent k-ee subtree patterns. In Al-
gorithm 2, line 5 and 8 ensures the algorithm to work in
a pattern-growth way. We check BEP condition at line 1,
and FEP condition at line 6. In this way, we do not have
to generate all frequent k-ee subtree patterns to mine closed
patterns.

5. DISCRIMINATIVE K-EE SUBTREE PAT-
TERN SELECTION

In Section 3, we developed an algorithm to mine closed
and frequent k-ee subtree pattern, but there may still be
too many resulting patterns. In this section, we present
how to carefully select discriminative patterns from among
the closed and frequent patterns in order to reduce the size
of the feature set and to improve the performance of the
classifier.

Based on the study that the patterns with high Fisher
score can help improving the classification performance [7],
we use it in our study to evaluate the discriminative power
of a k-ee subtree pattern. The Fisher score is defined as

Fr =

∑c
i=1 ni(µi − µ)2∑c

i=1 niσ2
i

where ni is the number of data samples in class i, µi is
the average pattern frequency in class i, σi is the standard
deviation of the pattern frequency in class i, and µ is the

70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FW POS RR 0-ee 1-ee 2-ee

Figure 7: Fisher score distribution of various feature
sets

Algorithm 3: Procedure WSMine to mine discrimina-
tive k-ee subtree patterns

input : Tree data set D, min sup θ
output: Discriminative k-ee features F of D

1 C ← ClosedMine(D,θ);
2 while (C 6= ∅) or (D 6= ∅) do
3 Select top-1 discriminative pattern t from C;
4 F ← F ∪ {t};
5 D ← D−{trees that are covered by δ features in F};
6 C ← C − {t};
7 end

average pattern frequency in the whole dataset. A pattern
will have a large Fisher score if it has similar values within
the documents of the same class and very different values
across the documents of different classes, at the same time.

Figure 7 presents Fisher score distributions of various fea-
ture sets such as function words (FW), POS tags (POS),
rewrite rules (RR), and k-ee subtree patterns for k=0, 1,
and 2 (0-ee, 1-ee, and 2-ee, respectively). We can easily see
that the highest scores are mostly from k-ee subtree pat-
terns, which implies that they can be more meaningful than
other features. In fact, in the experiments, our k-ee subtree
patterns achieved highest accuracy for all datasets.

Based on this Fisher score measure, we perform the fea-
ture selection procedure in a sequential coverage way as fol-
lows. We describe this procedure in Algorithm 3. We select
the top scored pattern which covers at least one syntactic
tree of the dataset and remove it from the list of the pat-
terns. Moreover, any syntactic tree that is covered by at
least δ features will be removed from the dataset. Here,
delta is a feature coverage threshold introduced in [7]. It
allows multiple patterns to represent a tree, which is known
to improve the classification accuracy. Third, we go back to
the second step until either the dataset becomes empty or
no more patterns are left.

Once the feature selection procedure is complete, we get
a small number of discriminative, closed, and frequent k-
ee subtree patterns. Considering these patterns as a feature
set, we express a document as a vector representation assign-
ing a feature value by the frequency of the pattern described
in Definition 4, and learn a classification model.

6. EXPERIMENTS
In this section, we present empirical evaluation results

Table 1: Statistics of News Articles
of documents # of sentences # of words

N1 100 3710 77501
N2 100 2666 59745
N3 100 5587 114337
N4 100 7198 129867

Total 400 19161 381450

Table 2: Statistics of Movie Reviews
of documents # of sentences # of words

M1 578 16508 423749
M2 567 15108 414295
M3 597 15320 357301
M4 415 4150 104337

Total 2177 51086 1299682

to validate the performance of our authorship classification
framework. In particular, we conduct experiments on news
articles and movie reviews. The experiments are designed
to test whether our k-ee subtree patterns, as a new feature
set, are useful for authorship classification.

6.1 Datasets
We collected two different kinds of documents from a pub-

lic data collection The New York Times: news articles and
movie reviews. We got four authors with 400 documents for
news articles, and four authors with around 2,000 documents
for movie reviews.

For the news articles, we chose two journalists Eric Dash
(N1) and Jack Healy (N2) from business department, and
two other journalists Denise Grady (N3) and Gina Kolata
(N4) from health department, who were one of the main
contributors in their departments. The reason we collected
documents in this way is because the journalists in the same
department are likely to write articles in the same topic and
genre using similar words. The statistics of each journalist
are shown in Table 1.

For the movie reviews, we chose four main movie critics of
The Times: A. O. Scott (M1), Manohla Dargis (M2), and
Stephen Holden (M3), and Jeannette Catsoulis (M4). The
reason we collected this data is because movie reviews of
the same movie are likely to be in the same topic and genre
using similar words. The statistics of each critics are shown
in Table 2.

6.2 Evaluation Methodology
To evaluate the performance, we paired the authors of

each domain and conducted binary classification on these
12 different datasets. For each dataset, we conducted 5-fold
cross validation, and averaged the accuracy as a measure of
the performance. For each fold, training data was used to
mine the syntactic features and to get a classification model
while test data was only used for prediction purpose. In this
way, our evaluation ensured that there is no information leak
from the test data for the classification task.

To show how effectively our new feature set works, we
compared the authorship classification performance with other
syntactic features such as function words, POS tags, and
rewrite rules. As for function words, we took the list of 308
function words from [21]. We used 70 POS tags generated

71

Table 3: Number of Features
Domain RR 0-ee 1-ee 2-ee

News Articles 3929 280.83 560.23 789.93
Movie Reviews 9029.2 557.87 1348.9 2074.5

from the stanford parser [18]. The number of features of
the other feature sets are presented in Table 3. For each
feature set and for each dataset, we computed the average
value of the number of distinct features of 5-fold training
data. In the table, we showed the average of the number
of distinct features for each domain. The difference of the
number of features between different domains implies that
movie reviews are written in more sophisticated way than
news articles. That also implies indirectly that it would be
harder to classify movie reviews than news articles. We see
that rewrite rules are using the biggest number of features.

We used the occurrences of each feature as a feature value
for the syntactic features except k-ee subtree patterns which
used a new frequency measure defined in Definition 4. For
the fair comparison, we used the same classifier, linear-kernel
SVM (with the parameter tuned for the best performance
of each feature set), which was previously shown to work
reliably with high accuracy on authorship classification [11].

6.3 Performance Evaluation
Authorship classification accuracies for various feature sets

are presented in Table 4 and 5. All experimental results of
k-ee subtree pattern-based classification used (relative) min-
imum support threshold 0.1 for frequent pattern mining and
sequential coverage threshold 10 for discriminative pattern
mining by default. We can easily find that our proposed
feature set of k-ee subtree patterns, especially for k = 1, 2,
achieved the highest accuracies for most of the datasets. We
see that using embedded edges can help to enhance the au-
thorship classification performance, but we cannot say more
embedded edges would get better performance. For a higher
number of embedded edges (k), even we utilize several prun-
ing techniques, it is intractable to mine them all. Moreover,
higher k sometimes tends to overfit to training data that
might degrade the accuracy performance. We can conclude
that a small number of embedded edges is enough to achieve
high performance of classification task for both in accuracy
and efficiency aspects.

For both data collections of news articles and movie re-
views, all feature sets showed similar tendencies. 1-ee and
2-ee showed the highest accuracies of news article datasets
and movie review data collections repectively, while POS
got the worst accuracies for both data collections. Among
12 datasets of experiments, N12, N34 and M12 showed bad
performances for all feature sets. Analyzing statistics of data
collections in Table 1 and 2, we see that the classes in them
has similar number of words which indirectly shows those
classes are hard to classify. Especially for dataset N34, both
classes of N3 and N4 are from health department of news
domain and they have quite a few quotations with informal
style of writings which made it the hardest dataset to be
classified. It is noticeable that even for this hard dataset,
our feature set got the highest accuracy with a big gap of
performance to the other feature sets.

We calculated the standard deviation of the accuracies to
show how reliable the feature sets are, and found that k-ee

Table 4: Accuracy Comparisons (News Articles)
FW POS RR 0-ee 1-ee 2-ee

N12 91.5 87 94 96 95 95.5
N13 94 85 91 97.5 98 97.5
N14 95.5 92.5 96 94.5 96.5 95
N23 95 92.5 92.5 96.5 98.5 99
N24 97 95.5 97.5 98.5 98.5 98.5
N34 80.5 67.5 67.5 88.5 90 90

AVG 92.3 86.7 89.8 95.3 96.1 96.0
STD 6.04 10.16 11.15 3.57 3.28 3.31

Table 5: Accuracy Comparisons (Movie Reviews)
FW POS RR 0-ee 1-ee 2-ee

M12 92.8 81.0 88.0 92.48 94.26 94.22
M13 93.6 92.5 92.7 95.22 95.06 95.8
M14 92.1 88.0 94.2 97 97.4 97.7
M23 94.4 92.8 94.8 97.58 97.92 97.58
M24 93.1 91.0 92.9 95.22 96.04 96.32
M34 93.1 88.6 94.9 97.12 97.22 97.12

AVG 93.2 89.0 92.9 95.8 96.3 96.5
STD 0.77 4.40 2.59 1.90 1.45 1.32

subtree patterns achieved consistent results for both data
collections.

Overall, we conclude that k-ee subtree patterns are mean-
ingful features for authorship classification which works reli-
ably for real life data collections and achieves high accuracy.

7. CONCLUSION
In this paper, we proposed a novel solution for an author-

ship classification problem by mining discriminative closed
k-ee subtree patterns. First, we designed a new feature set
of k-ee subtree patterns which contains more meaningful
syntactic structures of a sentence than previous feature sets
which are based on simple forms of syntactic features in-
cluding function words, POS tags, and rewrite rules. To
mine k-ee subtree patterns, we developed a closed frequent
k-ee tree mining algorithm by use of several pruning tech-
niques. We performed a Fisher score based feature selection
procedure on top of those mined patterns. This small set of
discriminative patterns could effectively classify the docu-
ments based on their authorship.

Experimental study has been performed on two real datasets,
news articles and movie reviews, from The New York Times
public data corpus. These data collections were carefully
chosen to ensure to be in the same genres using similar
terms. Our k-ee subtree pattern based classification achieved
the best results compared to other feature sets such as func-
tion words, POS tags, and rewrite rules.

In future research, we want to develop a way to directly
mine discriminative k-ee subtree patterns, not generating
all closed patterns. Usually, discrimiative patterns selected
from closed patterns with low minimum support threshold
θ show better accuracy, but it is hard to find an optimized
θ since the mining cost increases exponentially when θ be-
comes lower. A directive way of mining discriminative pat-
tern might work without specifying θ which would guarantee
high quality of discriminative patterns.

72

8. REFERENCES
[1] S. Argamon and S. Levitan. Measuring the usefulness

of function words for authorship attribution. In
ACH/ALLC, 2005.

[2] S. Argamon, M. Šarić, and S. S. Stein. Style mining of
electronic messages for multiple authorship
discrimination: first results. In KDD, 2003.

[3] H. Baayen, H. van Halteren, and F. Tweedie. Outside
the cave of shadows: using syntactic annotation to
enhance authorship attribution. Literary and Linguist
Computing, 11(3):121–132, 1996.

[4] S. Bloehdorn and A. Moschitti. Structure and
semantics for expressive text kernels. In CIKM, 2007.

[5] B. Bringmann and A. Zimmermann. Tree2 - decision
trees for tree structured data. In PKDD, 2005.

[6] S. Burrows, A. L. Uitdenbogerd, and A. Turpin.
Application of information retrieval techniques for
source code authorship attribution. In DASFAA, 2009.

[7] H. Cheng, X. Yan, J. Han, and C.-W. Hsu.
Discriminative frequent pattern analysis for effective
classification. In ICDE, 2007.

[8] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct
discriminative pattern mining for effective
classification. In ICDE, 2008.

[9] Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining
closed and maximal frequent subtrees from databases
of labeled rooted trees. IEEE Transactions on
Knowledge and Data Engineering, 17(2):190–202,
2005.

[10] O. de Vel, A. Anderson, M. Corney, and G. Mohay.
Mining e-mail content for author identification
forensics. SIGMOD Record, 30(4):55–64, 2001.

[11] J. Diederich, J. Kindermann, E. Leopold, and
G. Paass. Authorship attribution with support vector
machines. Applied Intelligence, 19(1-2):109–123, 2003.

[12] M. Gamon. Linguistic correlates of style: authorship
classification with deep linguistic analysis features. In
COLING, 2004.

[13] A. M. Garćıa and J. C. Mart́ın. Function words in
authorship attribution studies. Literary and Linguistic
Computing, 22(1):49–66, 2007.

[14] J. Grieve. Quantitative authorship attribution: An
evaluation of techniques. Literary and Linguistic
Computing, 22(3):251–270, 2007.

[15] G. Hirst and O. Feiguina. Bigrams of syntactic labels
for authorship discrimination of short texts. Literary
and Linguistic Computing, 22(4):405–417, 2007.

[16] D. L. Hoover. Statistical stylistics and authorship
attribution: an empirical investigation. Literary and
Linguistic Computing, 16(4):421–444, 2001.

[17] D. L. Hoover. Another perpective on vocabulary
richness. Computers and the Humanities,
37(2):151–178, 2003.

[18] D. Klein and C. D. Manning. The Standford parser: A
Statistical Parser, 2002. http:
//nlp.stanford.edu/software/lex-parser.shtml.

[19] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of software behaviors for failure
detection: a discriminative pattern mining approach.
In KDD, 2009.

[20] T. C. Mendenhall. Spelling checkers,spelling correctors
and the misspellings of poor spellers. Science,
11(214):237–246, 1887.

[21] R. Mitton. Spelling checkers,spelling correctors and
the misspellings of poor spellers. Information
Processing and Management, 23(5):495–505, 1987.

[22] A. Moschitti. Efficient convolution kernels for
dependency and constituent syntactic trees. In ECML,
2006.

[23] F. Mosteller and D. L. Wallace. Inference & Disputed
Authorship: The Federalist. Addison Wesley, 1964.

[24] J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen,
U. Dayal, and M. chun Hsu. Prefixspan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In ICDE, 2001.

[25] J. Rudman. The state of authorship attribution
studies: Some problems and solutions. Computers and
the Humanities, 31(4):351–365, 1998.

[26] C. Sanderson and S. Guenter. Short text authorship
attribution via sequence kernels, markov chains and
author unmasking: an investigation. In EMNLP, 2006.

[27] E. Stamatatos. A survey of modern authorship
attribution methods. Journal of the American Society
for Information Science and Technology,
60(3):538–556, 2009.

[28] A. Termier, M.-C. Rousset, M. Sebag, K. Ohara,
T. Washio, and H. Motoda. Dryadeparent, an efficient
and robust closed attribute tree mining algorithm.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 20(3):300–320, 2008.

[29] J. Wang and J. Han. Bide: Efficient mining of
frequent closed sequences. In ICDE, 2004.

[30] K. Wang, Z. Ming, and T.-S. Chua. A syntactic tree
matching approach to finding similar questions in
community-based qa services. In SIGIR, 2009.

[31] X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining
significant graph patterns by leap search. In SIGMOD,
2008.

[32] X. Yan and J. Han. Closegraph: mining closed
frequent graph patterns. In KDD, 2003.

[33] M. J. Zaki. Efficiently mining frequent trees in a
forest. In KDD, 2002.

[34] M. J. Zaki and C. C. Aggarwal. Xrules: an effective
structural classifier for xml data. In KDD, 2003.

[35] Y. Zhao and J. Zobel. Effective and scalable
authorship attribution using function words. In AIRS,
2005.

[36] Y. Zhao, J. Zobel, and P. Vines. Using relative
entropy for authorship attribution. In AIRS, pages
92–105, 2006.

[37] R. Zheng, J. Li, H. Chen, and Z. Huang. A framework
for authorship identification of online messages:
Writing-style features and classification techniques.
Journal of the American Society for Information
Science and Technology, 57(3):378–393, 2006.

[38] A. Zimmermann and B. Bringmann. Ctc — correlating
tree patterns for classification. In ICDM, 2005.

[39] L. Zou, Y. Lu, H. Zhang, R. Hu, and C. Zhou. Mining
frequent induced subtrees by prefix-tree-projected
pattern growth. In WAIMW, 2006.

73

Pattern Selection Problems in Multivariate Time-Series
using Equation Discovery

Arne Koopman, Arno Knobbe, Marvin Meeng
LIACS

Universiteit Leiden
akoopman@liacs.nl

ABSTRACT
In this paper, we present a method for pattern selection
in collections of patterns discovered in multivariate time-
series. Because our data is continuous in nature, the pat-
tern language we consider is somewhat out of the ordinary,
compared to the common discrete patterns considered in the
data mining field. An equation discovery system is employed
to generate either regular algebraic equations, or more com-
plex differential equations. As the equation discovery system
generates a collection of equations per target variable, and
we require equations for each variable, we are dealing with
an abundance of equations, quite likely with serious levels
of redundancy. The method presented here selects a sub-
set of equations by considering to what extent the different
variables are covered by the selected equations, while opti-
mising the relevance of variables within the equations. As
such, the equation selection method returns a concise set of
equations, that captures the dependencies between the dif-
ferent time-series well, while minimizing redundancy. The
work in this paper is inspired by the new InfraWatch project,
which deals with high-resolution sensor data from a highway
bridge. The 145 sensors (sensing structural characteristics
such as stretch, vibration and temperature) are distributed
fairly densely over the bridge, such that adjacent sensors
are likely to show correlated signals. Especially in an ex-
ploratory setting, one would be interested in a small collec-
tion of prototype sensors with associated equations for how
these prototypes are related to other sensors in the vicin-
ity. In the experimental section, we demonstrate how the
sensors can be modeled by (differential) equations, and how
the equation selection method picks relevant equations that
models structural properties of the bridge sensibly.

1. INTRODUCTION
This paper is concerned with multivariate time-series, specif-

ically with data collected by a series of sensors measuring at
a steady frequency. In the typical case, these sensors mea-
sure the state of a certain system at various locations, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UP’10, July 25th, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0216-6/10/07 ...$10.00.

that the measured signals will show a certain degree of cor-
relation. Our aim is to model such correlations by means of
patterns discovery. Compared to traditional pattern discov-
ery, our data is challenging in two particular ways. First,
the data is of continuous nature, which excludes the ma-
jority of (discrete) pattern discovery approaches. Second,
the data is measured as a function of time, which implies a
certain dependency between consecutive measurements for
a given sensor. In order to deal with these two challenges,
we employ an equation discovery system that is capable of
finding both regular algebraic equations (the continuous as-
pect) as well as differential equations (the temporal aspect).
The outcome of the equation discovery process is a (poten-
tially large) collection of equations which model the value of
one sensor as a function of a small number of other sensors.
Such equations, and how well they approximate reality, can
be used by analysts to find elementary relations between
components of the observed system, and may also suggest
possible redundancies in the sensor network.

The equation discovery system in question is the Lagramge
system, developed as an extension of the earlier Lagrange
system by Todorovski and Džeroski [4, 5, 15]. The sys-
tem considers a grammar of well-formed equations, and con-
structs candidate equations in a fashion reminiscent of ILP
or multi-relational systems [8, 5]. That is, the essentially
structural descriptions of the equations are constructed top-
down, with progressively more complex equations being built
by adding new variables (the sensors) and functions. A spe-
cific difference to said relational approaches is the compo-
nent of Lagramge which fits parameters of the equations
by means of the downhill simplex or Levenberg-Marquart
algorithms [13]. As such, the system combines a pattern
discovery-inspired component with an error-minimization com-
ponent. The typical setting of a Lagramge run is to select a
target sensor sx and specify a declarative bias (the equation
grammar) after which the system returns a list of possible
equations. Each equation includes a right-hand side which
involves a number of sensors. The equations differ in the
sensors involved, and in the constants that were fitted, and
consequently in the error on the data.

Although Lagramge produces the desired information (a
collection of equations modeling local dependencies in the
observed system), it suffers from a problem that is com-
mon to most pattern discovery system: an abundance of
results. This abundance comes from a number of sources.
First of all, different equations may model the dependencies
equally well, approximately. This redundancy is especially
apparent if two or more sensors are highly correlated, such

74

Figure 1: (left) Aerial picture of the situation of the Hollandse Brug, which connects the ‘island’ Flevoland
to the province Noord-Holland, and the adjacent railway bridge. (right) Some of the sensors attached to the
underside of the bridge.

that one of the sensors can simply be exchanged for an-
other, without essentially affecting the model. Furthermore,
there may be terms in the equation that do not substan-
tially contribute to the overall fit, for example by having
insignificant constants. Finally, there is redundancy pro-
duced by running Lagramge once for each potential target
sensor (all sensors once, if need be), such that one sensor
may be modeled in terms of another, and vice versa. Note
that all of these instances of pattern-redundancy appear in
other pattern discovery settings as well, including overlap-
ping conditions, irrelevant conditions and so on. Observing
this analogy between the equation selection problem and the
pattern selection problem, we propose to select a small but
relevant collection of equations, using a method that is in-
spired by a number of recent pattern selection methods [9,
1].

The patterns selection methods mentioned are centered
around the idea of greedy forward selection of the patterns.
Starting with an empty set of patterns C, all remaining pat-
terns are considered in turn, and a pattern f is added if it
improves the quality of C ∪ f substantially. This process
continues until either some stopping-criterion is met, or all
patterns have been included. In the case of patterns (which
are typically interpreted as binary features), the quality of
C ∪ f is often a measure of the joint entropy of C ∪ f [9], or
the mutual information between C and f [1]. As an alter-
native, more syntax-oriented interpretations of quality may
be employed, for example to optimize coverage of all items
in itemsets. This is one of the approaches that we will as-
sume in our equation selection method. Replacing patterns
by equations, we will assume that a specific equation se-
lected in C accounts for all sensors that appear in, both the
left and right hand side of, the equation. Therefore, a new
equation that features only sensors that do not yet appear
in any of the elements of C is a desirable addition to C. Our
method thus adds equations that cover as many new sensors
as possible.

Our work on equation discovery in multivariate time-series
is inspired by a recently started project, called InfraWatch

[7]. In this project, we deal with 145 sensors attached to,
or embedded in, the concrete of a large highway bridge in
the Netherlands (see Section 2). These sensors measure the
weather and traffic load on various locations of the bridge at
a frequency of 100Hz. Because the sensors are distributed
over the bridge, and vibrations are conducted through the
rigid structural elements, nearby sensors will be correlated.
Furthermore, sensors of different nature (e.g., stretch vs.
vibration) may be co-located, such that potentially differ-
ential equations may be required to model the difference in
physical properties these types of sensors measure. Espe-
cially for exploratory purposes, an analysts would be served
be a concise, yet informative set of sensors. Although our
main application in this paper is related to the InfraWatch
project, one could apply the same techniques to other data
of similar kind. One example can be found in the Adaptive
System Management problem [10, 11], where large collection
of monitors are continuously measuring the state and health
of different components in an IT-system, and clear numeric
dependencies, even of differential nature, between the load
in certain components exist.

The work presented in this paper is related to vector au-
toregression (VAR) [6]. In VAR, the goal is to find one model
that best describes how multiple time series are related. In
contrast, our method focusses on finding multiple simple
models that describe how time series are related. Moreover,
we aim to find a non-overlapping set of models that do a
good job a describing how they are related.

2. INFRAWATCH
The InfraWatch project is centred around an important

Dutch highway bridge: the Hollandse Brug. This bridge is
located between the Flevoland and Noord-Holland provinces,
at the place where the Gooimeer joins the IJmeer (see Fig-
ure 1 on the left). It was opened in June 1969, and in April
2007 it was announced that measurements would have shown
that the bridge did not meet the quality and security re-
quirements. Repairs were launched in August 2007 and a
consortium of companies has installed a monitoring config-

75

Figure 2: Example of a truck passing the single camera located on the bridge. The graphs show the signal of
two sensors, with a vertical bar indicating the time that corresponds to the shown video frame.

uration underneath the Hollandse Brug with the main aim
to collect data for evaluating how the bridge responds. The
sensor network is part of the strengthening project which
was necessary to upgrade the bridge’s capacity by overlay-
ing.

The monitoring system comprises 145 sensors that mea-
sure different aspects of the condition of the bridge, at sev-
eral locations along the bridge (see Figure 1 on the right).
The following types of sensors are employed:

− ‘geo-phones’ (vibration sensors) that measure the ver-
tical movement of the bottom of the road-deck as well
as the supporting columns.

− strain-gauges embedded in the concrete and attached
to the outside, measuring horizontal stress in two di-
rections.

− thermometers embedded in the concrete and attached
to the outside.

Furthermore, there is a weather station, and a video-camera
that provides a continuous video stream of the actual traffic
on the bridge. Additionally, there are plans to monitor the
adjacent railway bridge.

Prior to the start of the InfraWatch project, an initial
monitoring application was developed by a team of students,
that allows the visual inspection of both video and sensor
information. The application allows the user to navigate
through a selected time-frame, and display the traffic pass-
ing over the bridge, while the data over one or more sensors
is displayed in synchronised fashion (see Figure 2). The user
can select the nature of the sensor as well as the location of
it, which does not necessarily have to correspond with the
location of the camera. Using this application, it is fairly
easy to already observe some patterns in the data. For ex-
ample, the vertical load data nicely corresponds with heavy
vehicles passing.

3. EQUATION SET SELECTION
As part of our first efforts on this data, we aim to find

characteristic sensors within the whole sensor sytem S that

can be regarded as a representation of a set of other sensors.
For example, if sensor s1 demonstrates the same behaviour
as sensors s2 and s3, it suffices to consider only s1 as a
prototype for these three sensors.

In order to determine the behaviour of the sensors, we
consider the measurement data that is gathered from each
sensor. That is, for each sensor s, we have a signal consisting
of a stream of continous data that represents some measured
aspect of the bridge. We simply denote the signal value of
sensor i at timestamp t by: si(t). Within the measurement
period T , we know at every timestamp t ∈ T the si(t) for
each sensor.

Based on these values, we can now find equations that
predict the signal values of one sensor based on the reading
of others. In theory, we can apply any class of equation
that described relations between the sensors. However, as
our interest is in finding simple relations between sensors,
we initially focus on linear equations. In other words, an
equation fx that approximates sx over time has the following
form:

fx(t) = c0 +
∑

sy∈S

cy · sy(t)

where sy ∈ S, x 6= y, cy ∈ R.
We denote the length of an equation f , L(f), as the num-

ber of sy ∈ S, for which cy 6= 0.
Additionaly, we are not so much interested in any equa-

tion that describes relationships between sensors, but rather
in good equations. Therefore, we restrict the set of equations
to those equations that are able to closely approximate the
signal value of the target sensor:

∑
t∈T

|sx(t)− fx(t)| ≤ ε · |T |

where ε is the error threshold. The term |T | compensates for
differences in the size of the time window considered, and
thus allows a definition of ε independent of |T |. Given the
set of signals, we can now find a set of candidate equations
C that match these requirements, by means of Lagramge.

This typically results in many equations, and even worse,
many of these equations describe the same behaviour for

76

Algorithm 1 ForwardSelection

FowardSelection(C)

1. F = ∅; Q = 0
2. for all f ∈↓ C do
3. F ′ = F ∪ f
4. Q′ = 0
5. for all f ′ ∈ F ′ do
6. Q′ = Q′ + simplicity(f)
7. end for
8. if Q′ > Q and overlap(F ′) = 0 then
9. F = F ′; Q = Q′

10. end if
11. end for
12. return F

the same set of sensors. This makes this problem essentially
a pattern subset selection problem, and we therefore focus
on the selection of a subset of equations that reduces the
redundancy of this equation set.

One source of redundancy comes from the possible pres-
ence of irrelevant terms in the equations. For example, given
the two equations,

fx(t) = 1.0 · sy(t)

and

fx(t) = 1.0 · sy(t) + 0.00001 · sz(t)

the latter might produce a smaller error, but is worse in
the sense that it includes sz that does not contribute signif-
icantly to the modeling of sx, and is likely to play a more
important role when paired to another target sensor. In or-
der to specify a preference for equations with relevant terms
(such as the first example), we define a simplicity measure
for equations that is based on the scalars cy. Although defin-
ing such a measure can be done in various ways, including
rather sophisticated statistical tests for the contribution of
each term, we have opted for a more straightforward ap-
proach here. The following definition states how the simplic-
ity of an equation depends on the scales of its parameters:

simplicity(f) =
1∑

c∈f | log |c|| .

In other words, we prefer equations with scalars c closer to
1. We assume here that signals are all within farily similar
domains, which is the case in our data. Furthermore, we
prefer c values to be closer to 1 (i.e. log |c| close to 0), to
indicate a direct dependence.

Given our set of candidate equations C, can we find a sub-
set F ⊆ C such that it leads to the highest total simplicity?
As the simplicity cannot be negative, we can trivially select
all equations to achive a maximum simplicity. However, this
would provide a lot of redundancy, as many of these equa-
tions will describe the same relationship between sensors.
Therefore, we restrict this subset such that a relationship
between sx and sy is described at most once. That is, for
each pair of sensors (sx, sy) there is at most one equation fx

or fy such that:

fx = cy · sy(t) + . . . , or

fy = cx · sx(t) + . . .

In order to derive an interesting set of equations, one op-
tion is to evaluate all suitable subsets of C, and select that

Algorithm 2 ForwardSelectionWithPruning

FowardSelectionWithPruning(C)

1. F = ∅; Q = 0
2. for all f ∈↓ C do
3. F ′ = F ∪ f ; Q′ = 0
4. for all f ′ ∈ F ′ do
5. Q′ = Q′ + simplicity(f)
6. end for
7. if Q′ > Q and overlap(F ′) = 0 then
8. F = F ′; Q = Q′

9. else
10. for all f ′′ ∈ F ′ \ f ′ do
11. F ′′ = F ′ \ f ′′

12. Q′′ = 0
13. for all f ′′′ ∈ F ′′ do
14. Q′′ = Q′′ + simplicity(f)
15. end for
16. if Q′′ ≥ Q then
17. F = F ′′; Q = Q′′

18. end if
19. end for
20. end if
21. end for
22. return F

one that has the highest simplicity. How would this scheme
perform?

For each set of selected equations, F , we need to check
the simplicity for each f ∈ F that can be done linearly
in the length of f : O(L(f)). For the complete set, this
becomes O(|F | · |S|). Furthermore, we need to check for
every pair (f1, f2) ∈ F × F if it does not overlap: O(|S|2).
In total, this thus becomes for each set: O(|F | · |S|+ |F |2 ·
|S|2) = O(|F |2 · |S|2) for each selected set. Clearly, there
are P(C) number of all possible subsets of equations. The
total therefore becomes O(P(C) · (|F |2 · |S|2)). Clearly, an
exhaustive search is far from feasible. Typically, P(C) would
be by far the biggest factor in this equation, making it the
main target to minimise.

Our alternative therefore is to perform a heuristic search
through the C search space. In this search, we utilise a
forward selection scheme in which we evaluate the candidate
equations in order and select only those that contribute to
the total simplicity (see Algorithm 1).

In our approach, we order the set of candidate equations,
denoted by ↓ C, on length either:

− ascending: f1 > f2 ↔ L(f1) > L(f2), or

− descending f1 < f2 ↔ L(f1) > L(f2).

Each candidate equation is then added to F and checked
whether this increases the overall simplicity. After all can-
didates are evaluated, the resulting F is returned.

Due to overlap, a new candidate equation might not be
considered for inclusion in the resulting set while it might
provide with a good simplicity increase. Alternatively, we
can then apply a pruning strategy on F . That is, we can
check for every candidate pattern whether some of the al-
ready selected equations can be removed from the set (see
Algorithm 2).

77

Table 1: Characteristics of the 145 used sensors.

sensor type #sensors location X-axis
1: geophone Z-axis 34 {1, 4}
2b: strain X-axis embedded 16 {6, 7}
2p: strain X-axis attached 34 {0, 2, 3, 4, 5}
3b: strain Y-axis embedded 28 {6, 7}
3p: strain Y-axis attached 13 {3, 5}
4b: temperature embedded 10 {7}
4p: temperature attached 10 {5}

4. EXPERIMENTS
In our experiments, we have used sensor measurement

data derived from the Hollandse Brug in the Netherlands,
as part of the InfraWatch project. This setup consist of 145
sensors. As can be seen in Table 1, there are 7 basic sensor
types for which one a priori can expect that members to be-
have similarly. Therefore, in our first experiments, we have
selected one target sensors from each of the 7 types.

In our preliminary experiments, we have aquired data rep-
resenting 5 minutes of measurements, taken on the 24th of
October in 2008, of all 145 sensors at 100 Hz, leading to 50
Mb of data. In our first experiments, we have downsam-
pled this file with averaging to 1Hz, resulting in 297 distinct
records.

Given each distinct target sensor, we use this dataset and
Lagramge to fit equations on the target sensor. An equa-
tion grammar was used that produces linear functions of the
form fx(t) = c0 +

∑
cy · sy(t), as discussed. Note that this

grammar can be easily upgraded to more complex, higher-
order equations, were one so inclined. The amount of data
available, and the expected nature of relationships between
sensors plays a role in this decision also.

In our experiments, we have set the maximal prediction
error to 1.0 · 10−5. Unless reported otherwise, we have lim-
ited the search depth to 6, that is, at most 5 sensors and one
constant c0 can appear in the equation. Using a heuristic
sum squared error-based beam search, we then obtain the
1000 best equations for each sensor type. In total, we there-
fore have 7000 candidate equations. In Table 2, examples
are shown of the kinds of equation sets discovered, for two
sensors: s100 and s301. Also reported for each equation is
the sum squared error that is obtained when approximating
the target sensor.

4.1 Regular Equations
The candidate set of equations is ordered at the start of

our forward selection algorithm. In our experiments we ap-
plied an order based on the length of the equations, either as-
cending or descending. With this forward selection scheme,
we obtain much smaller equation sets out of the original can-
didate set. That is, sets with either 193 or just 1 equation,
respectively, and with respect to the candidate set, we obtain
reduction ratios of 2.8% and 0.014%. While these reductions
seem very good, we should also focus on the resulting sim-
plicity of the sets. In order to make this assesment, we take
a look at the total simplicity, the sum of all simplicity val-
ues, of the resulting equation set. We see that we obtain
a total simplicity of 48.1 · 103 and 105, for the ascending
and descending order repectively. Moreover, we can have a

Sensor 100

1.196 Sensor 101

Sensor 102-0.272

Sensor 1060.156

Sensor 106

type 3b

Sensor 101

type 2b
Sensor 100

type 2b

Sensor 102

type 2b

Figure 3: An example equation set shown in situ of
the Hollandse Brug, please refer to Table 1 for the
sensor type description.

look at how much of the sensor system is covered by these
equation sets, which is 174 sensor pairs and 5 sensor pairs
respectively.

However, such a forward selection algorithm with an over-
lap restriction is likely to select equations early on in the
search process that might conflict with better candidates
later on. Therefore, we have applied the pruning strategy
for both candidate orders to observe its results.

As for the simplicity, we see that pruning leads to much
better results in both the ascending and descending case. In
Figure 5 (left), we depict the increase of simplicity during
the run of the algorithm. As more candidates are being eval-
uated, we see that some of them can be added successfully to
the equation set to increase its simplicity. Both orders show
a similar increase in simplicity, although the descending ap-
proach leads to a slightly higher simplicity. The maximum
obtained qualities are 1.57 · 106 and 1.72 · 106, for ascending
and descending respectively.

We see the effect of pruning more clearly when looking
at how the cover behaves over time (Figure 5 (right)). By
cover, we mean the total number of unique sensors appearing
in the right-hand side of the selected equations. Depicted
for both candidate orders, we see how pruning affects the
cover in a non-monotonic manner in favour of increasing
the simplicity of the complete set of equations. In this re-
spect, the descending-ordered candidate set gradually leads
to larger covers of the sensor system, while the ascending
order seems to peak early on in the search process. This
eventually results in a cover of 40 and 154 for ascending and
descending respectively.

We depict an example equation set in Figure 3. This result
is obtained when using pruning on the descending-ordered
candidate set as described earlier on. We show the sensors
that are related to sensor 100, namely 101, 102, and 106:

f100(t) = 23.30+1.196·s101(t)−0.272·s102(t)+0.156·s106(t)

Note that all selected sensors fall within the same segment
of the complete bridge (a total of 7 segments). Furthermore,
all sensors are of the embedded type, which indicates that

78

Table 2: Examples of the first 5 equations found by Lagramge for sensors 100 and 220.

f100 = −4.799 + 1.16 · s101 − 0.2364 · s102 + 0.1773 · s104 + 0.1104 · s108 − 268.8 · s233 (SSE = 0.1084)
f100 = 16.98 + 1.143 · s101 − 0.2896 · s102 + 0.1347 · s104 + 0.1221 · s106 + 166.0 · s223 (SSE = 0.1086)
f100 = 16.70 + 1.14 · s101 − 0.293 · s102 + 0.1335 · s104 + 0.1204 · s106 + 128.8 · s207 (SSE = 0.109)
f100 = 11.8 + 1.150 · s101 − 0.3028 · s102 + 0.1469 · s104 + 0.09248 · s106 − 84.352 · s219 (SSE = 0.1092)
f100 = −4.812 + 1.152 · s101 − 0.2431 · s102 + 0.1916 · s104 + 0.1069 · s108 − 55.15 · s201 (SSE = 0.1094)
...
f301 = 2.215− 4.291 · 10−6 · s105 + 3.502 · s235 + 0.7977 · s317 (SSE = 1.888 · 10−5)
f301 = 2.275− 4.215 · 10−6 · s105 + 4.795 · s236 + 0.7916 · s317 (SSE = 1.892 · 10−5)
f301 = 2.251− 4.206 · 10−6 · s105 + 3.273 · s241 + 0.7939 · s317 (SSE = 1.895 · 10−5)
f301 = 2.289− 4.199 · 10−6 · s105 + 2.09 · s233 + 0.7902 · s317 (SSE = 1.901 · 10−5)
f301 = 2.328− 4.2240 · 10−6 · s105 − 0.8519 · s224 + 0.7865 · s317 (SSE = 1.902 · 10−5)
...

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 7
4

3

3
9
6

9
3
0
1

5
8
3

1

1
3
7
1

7
7
0
2

3
2
4
2

9
6

7
2

5
1
1
3

1
6
4
3

7
0

8
3

3
5
1
4

9
9
4
4

5
4

8
4

1
9
1
5

7
3
5
5

3
8
8
5

9
2

2
6

5
7
5
6

1
2
9
6

7
6
2

7

3
1
6
7

to
ta

l q
u

a
li

ty

Quality

ascend

descend

0

20

40

60

80

100

120

140

160

180

200

1 7
4
3

3
9
6

9
3
0
1

5
8
3
1

1
3
7
1

7
7
0
2

3
2
4
2

9
6
7
2

5
1
1
3

1
6
4
3

7
0
8
3

3
5
1
4

9
9
4
4

5
4
8
4

1
9
1
5

7
3
5
5

3
8
8
5

9
2
2
6

5
7
5
6

1
2
9
6

7
6
2
7

3
1
6
7

n
u

m
b

e
r

o
f

se
n

so
r

p
a

ir
s

Cover

ascend

descend

Figure 5: The increase of the simplicity (left) and the cover (right) of the equation set, both as a function of
the evaluated candidate equations when using pruning.

this type of signal differs from the attached type in terms of
physical characteristics.

When looking at the original signals, we see that sensor
102 is indeed an inverted signal opposed to sensor 100, and
that 101 is quite similar to 100, and 106 is indeed also posi-
tively correlated. All signals show peaks occuring at similar
times, which are our events of interest (see Figure 4). In this
setup, we would select sensor 100 as a prototype to demon-
strate which events are occurring in the sensor system.

4.2 Differential Equations
Apart from the regular algebraic grammar used in the pre-

vious section, we can use more elaborate grammars in order
to fit more complex equations on the data. For example,
we can use differential equations to approximate the target
signal. This can actually be a very good way to model time
dependent aspects of the sensor system, as it includes the
temporal aspect more directly in the equations. To this end,
we have also used the above sensor data to fit the following
type of equation. Again, we have opted for relatively simple,
though differential, models of the data:

dfx

dt
= c0 +

∑
cy · sy(t)

Like before, we have used a beam search with the same
parameters to find the 1000 best equations that minimise

the prediction error for the target sensor. The first five dif-
ferential equations found are shown in Table 3. For equation
selection on the differential equations, we see similar results
as for the linear case. For ascending and descending, the for-
ward selection without pruning leads to a (relatively small)
simplicity of 983.2 and 27.6, a cover of 36 and 6, and an
equation subset size of 35 and 2, respectively. As a demon-
stration, the two equations in this last subset are as follows:

df100

dt
= 128.7− 0.40 · s162(t) + 5551 · s240(t)− 13.7 · s318(t)

df100

dt
= 32.8 + 0.12 · s116(t)− 1316 · s209(t)− 3.34 · s317(t)

Again, we see much better results when applying the prun-
ing strategy on the candidate equation set. For ascending
and descending, the forward selection with pruning leads to
a simplicity of 7.57 · 105 and 1.39 · 106, a cover of 26 and 56,
and a equation subset size of 10 and 45, respectively.

From this we can conclude that in terms of the number
of selected equations in both cases we obtain very good re-
duction ratios, 0.5% and 0.02% without pruning, and 0.14%
and 0.64% with pruning.

4.3 Select Target Sensors
In the previous experiments, we have used a set of 7 sen-

sors, one for each type, as targets for which equations were

79

Table 3: Examples of the first 5 differential equations found by Lagramge for sensor 100.

df100(t)
dt

= 12.95 + 0.1115 · s116(t)− 1374.8 · s209(t)− 1.6136 · s318(t) (SSE = 9.418)
df100(t)

dt
= −1.540 + 0.1076 · s116(t)− 1260.9 · s209(t) (SSE = 9.43133)

df100(t)
dt

= 27.61 + 0.1614 · s117(t)− 1147.1 · s209(t)− 2.7610 · s317(t) (SSE = 9.442)
df100(t)

dt
= 27.64 + 0.1682 · s117(t)− 1359.4 · s209(t)− 3.168 · s318(t) (SSE = 9.483)

df100(t)
dt

= 16.63 + 0.1458 · s117(t)− 1099.2 · s209(t)− 1.787 · s319(t) (SSE = 9.50)
...

-5

0

5

10

15

20

25

sensor 101

sensor 102

sensor 106

0

5

0

5

10

15

-10

-5

0

5

10

15

20

25

1 6
1

1
3

6
4

1
6

6
7

1
9

6
0

1

1
2

1

6
3

1

1
5

1

6
6

1

1
8

1

6
9

1

1
1

2

6
2

2

1
4

2

6
5

2

1
7

2

6
8

2

sensor 100

Figure 4: The sensor measurements for the signals
that correspond to the example shown in Figure 3.

fitted. However, it could be that this background knowledge
steers the search process significantly in a biased direction.
Therefore, we have derived a set of candidate equations for
each sensor in the system as target.

Moreover, we have reduced the search depth of Lagramge
such that exactly one sensor can be paired with one target
sensor. This allows the search space to be kept reasonable,
while it still leads to over 20 thousand candidate equations.
In addition, having only one sensor in the equation shows
more clearly the direct relation between the sensors.

For this, we have used the best performing variant of our
algorithm: with pruning and a descending-ordered candi-
date set. This resulted in an equation set of size 223. As for

the target sensors, a set of 26 distinct sensors were selected
as representations for the complete system. The resulting
equation set had a simplicity of 3.74 · 107 and covered 196
pairs of the sensor system.

How does this relate to the case of hand-picking a set of
target sensors? When selecting a set of target sensors from
the complete sensor space, we see that not all sensor types
are represented as targets. If we break these down to sensor
type, we get the following distribution:

type description targets equations
1 geophone Z-axis 8 12
2b strain X-axis embedded 0 0
2p strain X-axis attached 1 1
3b strain Y-axis embedded 1 1
3p strain Y-axis attached 0 0
4b temperature embedded 6 14
4p temperature attached 10 195

When visually inspecting the sensor signals, we see that
those sensor types that are not so well described by other
sensors tend to have more prototypes in the resulting set.
For example, when inspecting the signals corresponding to
sensor type 1, the geophone sensors, we see that all chosen
target sensors of this type fluctuate quite a lot (see Figure
6).

5. CONCLUSION
Increasingly, physical systems are being equipped with

sensors that in some form monitor its behaviour. In this
paper, we focus on one such system in particular, the Hol-
landse Brug, which in the context of the InfraWatch project
has been equipped with a multitude of sensors that measure
aspects such as vibrations and strain. The aim of the project
is to use the derived stream of sensor data to find interesting
patterns and features that can be considered characteristic
for its short and long-term behaviour.

In this paper, the focus was on finding a small set of in-
teresting sensors within the large set of available sensors.
As monitoring the complete system at once is very hard, we
have proposed to model dependencies between sensors, and
find characteristic sensors that can serve as a prototype for
other sensors. The monitoring and exploratory analysis of
the data can then be restricted to this subset of sensors. The
prototype sensors should ideally contain the same features
(peaks, response to traffic, etc.) as all the other sensors they
represent.

Dealing with numeric data is a hard task for pattern min-
ing techniques. However, we propose to shift the context
slightly. Instead of grouping sensors based on their dis-
crete events, we propose to group those sensors that can

80

-1,50E-04

-1,00E-04

-5,00E-05

0,00E+00

5,00E-05

1,00E-04

1,50E-04

-1,00E-04

-5,00E-05

0,00E+00

5,00E-05

1,00E-04

-5,00E-05

0,00E+00

5,00E-05

-5,00E-05

0,00E+00

5,00E-05

-5,00E-05

0,00E+00

5,00E-05

-5,00E-05

0,00E+00

5,00E-05

-5,00E-05

0,00E+00

5,00E-05

-5,00E-05

0,00E+00

5,00E-05

Figure 6: The signal values of some of the geophone
sensors, that are hard to group. As expected, in
contrast to other sensors, we see that the events are
not as clearly present in the signals

be used well to describe other sensors in the form of equa-
tions. Although many specific implementations can be used,
our inital results focus on linear and first-order differential
equations. In these first experiments, we see that adjacent
sensors, those that are likely to measure similar events, are
indeed grouped by our approach.

When looking at the signal behaviour within the group we
see that distinct peaks, which indicate distinct traffic loads,
occur at similar time points, and stand out clearly from the
noise in the signal.

Acknowledgements
The InfraWatch project is funded by the Dutch funding
agency STW, under project number 10970. Access to sensor
data of the Hollandse Brug is kindly provided by Strukton
b.v.. Specifically Bas Obladen, Carlos Bosma and Hessel
Galenkamp from Strukton were instrumental in setting up
the sensors and data acquisition facilities, as well as arrang-
ing access to the data.

6. REFERENCES
[1] Bringmann, B., Zimmermann, A. The Chosen Few:

On Identifying Valuable Patterns, In Proceedings
ICDM 2007.

[2] M. Dejori, H.H. Malik, F. Moerchen, N.C. Tas, and C.
Neubauer, 2009 Development of Data Infrastructure
for the Long Term Bridge Performance Program, In
Proceedings of Structures ’09, Austin, USA.

[3] E. Doupal, R. Calderara, 2004, Weigh-In-Motion, In
Proceedings of First International Conference on
Virtual and Remote Weigh Stations, Orlando.

[4] Džeroski, S. and Todorovski, L. (1993) Discovering
dynamics. In Proc. Tenth International Conference on
Machine Learning, pages 97-103. Morgan Kaufmann,
San Mateo, CA.

[5] Džeroski, S. and Todorovski, L. (1995) Discovering
dynamics: from inductive logic programming to
machine discovery. Journal of Intelligent Information
Systems, 4: 89-108.

[6] Enders, W. Applied Econometric Time Series. John
Wiley and Sons 2003.

[7] Knobbe, A., Blockeel, H., Koopman, A., Calders, T.,
Obladen, B., Bosma, C., Galenkamp, H., Koenders,
E., Kok, J. InfraWatch: Data management of large
systems for monitoring infrastructural performance, In
Proceedings IDA 2010, Tucson, USA, 2010

[8] Knobbe, A. Multi-Relational Data Mining. IOS Press,
Amsterdam, 2006.
http://www.kiminkii.com/thesis.pdf.

[9] Knobbe, A., Ho, E.K.Y. Maximally-Informative
k-Itemsets, and their Efficient Discovery, In
Proceedings KDD 2006, 2006.

[10] A. Knobbe, 1997, Data Mining for Adaptive System
Management, In Proceedings of PAKDD ’97, London.

[11] A. Knobbe, Bart Marseille, Otto Moerbeek, Daniël
M.G. van der Wallen, Results in Adaptive System
Management, Benelearn’98

[12] G. Meijer, Smart Sensor Systems, 2008, ISBN:
978-0-470-86691-7, Hardcover, 404 pages.

[13] Press, W.H., Flannery, B.P., Teukolsky, S.A.,
Vetterling, W.T. Numerical Recipes. Cambridge
University Press, Cambridge, MA, 1986.

[14] Riggelsen, C., Ohrnberger, M., Scherbaum, F.
Dynamic Bayesian Networks for Real-Time
Classification of Seismic Signals, In Proceedings of
PKDD ’07.

[15] Todorovski, L. and Džeroski, S. (1997) Declarative
bias in equation discovery. In Proc. Fourteenth
International Conference on Machine Learning, pages
376-384. Morgan Kaufmann, San Mateo, CA.

81

Author Index

Adhikari, Prem Raj 8
Carmichael, Chris L. 17
De Bie, Tijl 27
Denton, Anne 36
Dorr, Dietmar 36
Fradkin, Dmitriy 45
Han, Jiawei 6, 65
Hong, Hui . 54
Hollmén, Jaakko 8
Huang, Kun 55
Jin, Ruoming 55
Kim, Hyungsul 65
Kim, Sankyum 65
Knobbe, Arno 74
Kontonasios, Kleantis-Nikolaus 27
Koopman, Arne 74
Leung, Carson K.-S. 17
Meeng, Marvin 74
Moerchen, Fabian 45
Spyropoulou, Eirini 27
Webb, Geoff 7
Weninger, Tim 65
Wu, Jianfei 36
Xiang, Yang 55

82

	frontmatter
	cover
	frontcontent.pdf

	p6-han
	p7-webb
	p8-adhikari
	p17-carmichael
	p27-debie
	p36-denton
	p45-fradkin
	p55-jin-corrected
	p65-kim
	p74-koopman
	backmatter

